我目前正在尝试计算CSV文件列中的重复值,并将值返回到python中的另一个CSV列。
例如,我的CSV文件:
KeyID GeneralID
145258 KL456
145259 BG486
145260 HJ789
145261 KL456
我想要实现的是计算有多少数据具有相同的GeneralID
并将其插入到新的CSV列中。例如,
KeyID Total_GeneralID
145258 2
145259 1
145260 1
145261 2
我尝试使用拆分方法拆分每个列,但它没有那么好用。
我的代码:
case_id_list_data = []
with open(file_path_1, "rU") as g:
for line in g:
case_id_list_data.append(line.split('\t'))
#print case_id_list_data[0][0] #the result is dissatisfying
#I'm stuck here..
答案 0 :(得分:3)
您必须分三步完成任务: 1.读取CSV文件 2.生成新列的值 3.将值添加到文件中 导入csv import fileinput import sys
# 1. Read CSV file
# This is opening CSV and reading value from it.
with open("dev.csv") as filein:
reader = csv.reader(filein, skipinitialspace = True)
xs, ys = zip(*reader)
result=["Total_GeneralID"]
# 2. Generate new column's value
# This loop is for counting the "GeneralID" element.
for i in range(1,len(ys),1):
result.append(ys.count(ys[i]))
# 3. Add value to the file back
# This loop is for writing new column
for ind,line in enumerate(fileinput.input("dev.csv",inplace=True)):
sys.stdout.write("{} {}, {}\n".format("",line.rstrip(),result[ind]))
我还没有使用临时文件或任何高级模块,如熊猫或任何东西。
答案 1 :(得分:2)
import pandas as pd
#read your csv to a dataframe
df = pd.read_csv('file_path_1')
#generate the Total_GeneralID by counting the values in the GeneralID column and extract the occurrance for the current row.
df['Total_GeneralID'] = df.GeneralID.apply(lambda x: df.GeneralID.value_counts()[x])
df = df[['KeyID','Total_GeneralID']]
Out[442]:
KeyID Total_GeneralID
0 145258 2
1 145259 1
2 145260 1
3 145261 2
答案 2 :(得分:2)
您可以使用pandas
库:
read_csv
value_counts
获取GeneralID
列中的值,按输出列获取rename
join
原件DataFrame
import pandas as pd
df = pd.read_csv('file')
s = df['GeneralID'].value_counts().rename('Total_GeneralID')
df = df.join(s, on='GeneralID')
print (df)
KeyID GeneralID Total_GeneralID
0 145258 KL456 2
1 145259 BG486 1
2 145260 HJ789 1
3 145261 KL456 2
答案 3 :(得分:2)
如果你对熊猫不利并希望继续使用标准库:
<强>代码:强>
import csv
from collections import Counter
with open('file1', 'rU') as f:
reader = csv.reader(f, delimiter='\t')
header = next(reader)
lines = [line for line in reader]
counts = Counter([l[1] for l in lines])
new_lines = [l + [str(counts[l[1]])] for l in lines]
with open('file2', 'wb') as f:
writer = csv.writer(f, delimiter='\t')
writer.writerow(header + ['Total_GeneralID'])
writer.writerows(new_lines)
<强>结果:强>
KeyID GeneralID Total_GeneralID
145258 KL456 2
145259 BG486 1
145260 HJ789 1
145261 KL456 2
答案 4 :(得分:0)
使用csv.reader而不是split()方法。 它更容易。
由于