我想在我的函数x[1]
中对x[2]
和GGG
进行更精确(最多6个小数位)的估算。
使用optim
,我得到一些精确到3位小数,但我想知道如何将精度提高到至少6位小数?
可以optimize
和nlm
用于此目标吗?
GGG = function(Low, High, p1, p2) {
f <- function(x) {
y <- c(Low, High) - qcauchy(c(p1, p2), location=x[1], scale=x[2])
}
## SOLVE:
AA <- optim(c(1,1), function(x) sum(f(x)^2) )
## return parameters:
parms = unname(AA$par)
return(parms) ## Correct but up to 3 decimal places
}
## TEST:
AAA <- GGG (Low = -3, High = 3, p1 = .025, p2 = .975)
## CHECK:
q <- qcauchy( c(.025, .975), AAA[1], AAA[2] ) # What comes out of "q" MUST match "Low" and
# "High" up to 6 decimal places
答案 0 :(得分:1)
optim函数具有公差控制参数。用以下代码替换你的optim函数:
AA <- optim(c(1,1), function(x) sum(f(x)^2), control=list(reltol=(.Machine$double.eps)))
返回:
> q
[1] -3 3
> AAA
[1] 5.956798e-08 2.361051e-01