我不确定我是否适当地提出了问题标题。但是,我试图解释下面的问题。如果你能想到这个问题,请建议适当的标题。
说我有两种类型的列表数据:
list_headers = ['gene_id', 'gene_name', 'trans_id']
# these are the features to be mined from each line of `attri_values`
attri_values =
['gene_id "scaffold_200001.1"', 'gene_version "1"', 'gene_source "jgi"', 'gene_biotype "protein_coding"']
['gene_id "scaffold_200001.1"', 'gene_version "1"', 'trans_id "scaffold_200001.1"', 'transcript_version "1"', 'exon_number "1"', 'gene_source "jgi"', 'gene_biotype "protein_coding"', 'transcript_source "jgi"', 'transcript_biotype "protein_coding"', 'exon_id "scaffold_200001.1.exon1"', 'exon_version "1"']
['gene_id "scaffold_200002.1"', 'gene_version "1"', 'trans_id "scaffold_200002.1"', 'transcript_version "1"', 'exon_number "3"', 'gene_source "jgi"', 'gene_biotype "protein_coding"', 'transcript_source "jgi"', 'transcript_biotype "protein_coding"', 'exon_id "scaffold_200002.1.exon3"', 'exon_version "1"']
我正在尝试根据list in the header
和attribute in the attri_values
的匹配制作表格。
output = open('gtf_table', 'w')
output.write('\t'.join(list_headers) + '\n') # this will first write the header
# then I want to read each line
for values in attri_values:
for list in list_headers:
if values.startswith(list):
attr_id = ''.join([x for x in attri_values if list in x])
attr_id = attr_id.replace('"', '').split(' ')[1]
output.write('\t' + '\t'.join([attr_id]))
elif not values.startswith(list):
attr_id = 'NA'
output.write('\t' + '\t'.join([attr_id]))
output.write('\n')
问题:当list of list_headers
中找到来自values of attri_values
的匹配字符串时,一切正常,但是当没有匹配时,会有很多重复&#39 ; NA'
最终预期结果:
gene_id gene_name trans_id
scaffold_200001.1 NA NA
scaffold_200001.1 NA scaffold_200001.1
scaffold_200002.1 NA scaffold_200002.1
发布编辑:
这就是我写elif
的方式的问题(因为每次不匹配都会写出' NA')。我试图移动{{{}的条件1}}以不同的方式但没有成功。 如果我删除了NA
,则会输出(elif
丢失)
NA
答案 0 :(得分:1)
python有一个find
字符串方法,您可以使用它来迭代每个attri_values的每个列表标题。尝试使用此功能:
def Get_Match(search_space,search_string):
start_character = search_space.find(search_string)
if start_character == -1:
return "N/A"
else:
return search_space[(start_character + len(search_string)):]
for i in range(len(attri_values_1)):
for j in range(len(list_headers)):
print Get_Match(attri_values_1[i],list_headers[j])
答案 1 :(得分:1)
我使用pandas的答案
import pandas as pd
# input data
list_headers = ['gene_id', 'gene_name', 'trans_id']
attri_values = [
['gene_id "scaffold_200001.1"', 'gene_version "1"', 'gene_source "jgi"', 'gene_biotype "protein_coding"'],
['gene_id "scaffold_200001.1"', 'gene_version "1"', 'trans_id "scaffold_200001.1"', 'transcript_version "1"', 'exon_number "1"', 'gene_source "jgi"', 'gene_biotype "protein_coding"', 'transcript_source "jgi"', 'transcript_biotype "protein_coding"', 'exon_id "scaffold_200001.1.exon1"', 'exon_version "1"'],
['gene_id "scaffold_200002.1"', 'gene_version "1"', 'trans_id "scaffold_200002.1"', 'transcript_version "1"', 'exon_number "3"', 'gene_source "jgi"', 'gene_biotype "protein_coding"', 'transcript_source "jgi"', 'transcript_biotype "protein_coding"', 'exon_id "scaffold_200002.1.exon3"', 'exon_version "1"']]
# process input data
attri_values_X = [dict([tuple(b.split())[:2] for b in a]) for a in attri_values]
# Create DataFrame with the desired columns
df = pd.DataFrame(attri_values_X, columns=list_headers)
# print dataframe
print df
输出
gene_id gene_name trans_id
0 "scaffold_200001.1" NaN NaN
1 "scaffold_200001.1" NaN "scaffold_200001.1"
2 "scaffold_200002.1" NaN "scaffold_200002.1"
没有大熊猫也很容易。我已经给了你attri_values_X
,然后你就在那里,只需从字典中删除你不想要的密钥。
答案 2 :(得分:1)
我设法编写了一个有助于解析数据的函数。我试图修改你发布的原始代码,这里的问题复杂化是你存储需要解析的数据的方式,无论如何我无法判断,这里是我的代码:< / p>
def searchHeader(title, values):
""""
searchHeader(title, values) --> list
*Return all the words of strings in an iterable object in which title is a substring,
without including title. Else write 'N\A' for strings that title is not a substring.
Example:
>>> seq = ['spam and ham', 'spam is awesome', 'Ham is...!', 'eat cake but not pizza']
>>> searchHeader('spam', attri_values)
['and', 'ham', 'is', 'awesome', 'N\\A', 'N\\A']
"""
res = []
for x in values:
if title in x:
res.append(x)
else:
res.append('N\A') # If no match found append N\A for every string in values
res = ' '.join(res)
# res = res.replace('"', '') You can use this for your code or use it after you call the function on res
res = res.split(' ')
res = [x for x in res if x != title] # Remove title string from res
return res
在这种情况下,正则表达式也很方便。使用此函数解析数据,然后格式化结果以将表写入文件。此函数仅使用一个for
循环和一个列表推导,在代码中,您使用两个嵌套的for
循环和一个列表推导。
将每个标题字符串分别传递给函数,如下所示:
for title in list_headers:
result = searchHeader(title, attri_values)
...format as table...
...write to file...
如果可行,请考虑从简单列表移至attri_values
的字典,这样您就可以将字符串与其标题分组:
attri_values = {'header': ('data1', 'data2',...)}
在我看来,这比使用列表更好。另请注意,您在代码中覆盖了list
名称,这不是一件好事,因为list
实际上是创建列表的内置类。