我正在尝试将多个csv文件合并到一个数据帧中,并尝试使用for循环操作结果数据帧。结果数据框可能有1,500,000到2,000,000行之间的任何位置。
我正在使用以下代码。
setwd("D:/Projects")
library(dplyr)
library(readr)
merge_data = function(path)
{
files = dir(path, pattern = '\\.csv', full.names = TRUE)
tables = lapply(files, read_csv)
do.call(rbind, tables)
}
Data = merge_data("D:/Projects")
Data1 = cbind(Data[,c(8,9,17)],Category = "",stringsAsFactors=FALSE)
head(Data1)
for (i in 1:nrow(Data1))
{
Data1$Category[i] = ""
Data1$Category[i] = ifelse(Data1$Days[i] <= 30, "<30",
ifelse(Data1$Days[i] <= 60, "31-60",
ifelse(Data1$Days[i] <= 90, "61-90",">90")))
}
但是代码运行的时间很长。是否有更好,更快的方法进行相同的操作?
答案 0 :(得分:2)
We can make this more optimized by reading with fread
from data.table
and then using cut/findInterval
. This will become more pronounced when it is run in multiple cores, nodes on a server where fread
utilize all the nodes and execute parallelly
library(data.table)
merge_data <- function(path) {
files = dir(path, pattern = '\\.csv', full.names = TRUE)
rbindlist(lapply(files, fread, select = c(8, 9, 17)))
}
Data <- merge_data("D:/Projects")
Data[, Category := cut(Data1, breaks = c(-Inf, 30, 60, 90, Inf),
labels = c("<=30", "31-60", "61-90", ">90"))]
答案 1 :(得分:1)
您已经在使用dplyr
了,为什么不呢:
Data = merge_data("D:/Projects") %>%
select(8, 9, 17) %>%
mutate(Category = cut(Days,
breaks = c(-Inf, 30, 60, 90, Inf),
labels = c("<=30", "31-60", "61-90", ">90"))
答案 2 :(得分:0)
Akrun确实是正确的,因为fread远远快于read.csv。
然而,除了他的帖子之外,我还要补充说你的for循环是完全没必要的。他用cut / findInterval替换它,我不熟悉它。然而,就简单的R编程而言,当计算中的某些因子按行更改时,for循环是必需的。但是,在您的代码中,情况并非如此,并且不需要for循环。
当您只需要对列进行一次计算时,基本上您运行的计算最多可达200万次。
您可以使用以下内容替换for循环:
Data1$category = ifelse(Data1$Days <= 30, "<=30",
ifelse(Data1$Days <= 60, "31-60",
ifelse(Data1$Days <= 90, "61-90",">90")))
并且您的代码将更快地运行waaaaaay