我想找出在Python中实现以下目标的最有效方法:
假设我们有两个列表a
和b
,它们长度相等,最多包含1e7个元素。
但是,为了便于说明,我们可以考虑以下内容:
a = [2, 1, 2, 3, 4, 5, 4, 6, 5, 7, 8, 9, 8,10,11]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15]
目标是从a_new
创建严格单调列表a
,而仅使用具有相同值的样本点的第一个样本点。
还应在a
中删除b
中必须删除的相同索引,以便最终结果为:
a_new = [2, 3, 4, 5, 6, 7, 8, 9,10,11]
b_new = [1, 4, 5, 6, 8,10,11,12,14,15]
当然,这可以使用计算成本高昂的for
循环来完成,但由于数据量巨大,这种循环并不合适。
非常感谢任何建议。
答案 0 :(得分:14)
您可以计算a
的累计最大值,然后使用np.unique
删除重复项,您还可以使用b
记录唯一索引,以便相应地设置a = np.array([2,1,2,3,4,5,4,6,5,7,8,9,8,10,11])
b = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
a_cummax = np.maximum.accumulate(a)
a_new, idx = np.unique(a_cummax, return_index=True)
a_new
# array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
b[idx]
# array([ 1, 4, 5, 6, 8, 10, 11, 12, 14, 15])
子集:
ws
答案 1 :(得分:11)
使用numba
import numba
def psi(A):
a_cummax = np.maximum.accumulate(A)
a_new, idx = np.unique(a_cummax, return_index=True)
return idx
def foo(arr):
aux=np.maximum.accumulate(arr)
flag = np.concatenate(([True], aux[1:] != aux[:-1]))
return np.nonzero(flag)[0]
@numba.jit
def f(A):
m = A[0]
a_new, idx = [m], [0]
for i, a in enumerate(A[1:], 1):
if a > m:
m = a
a_new.append(a)
idx.append(i)
return idx
时间
%timeit f(a)
The slowest run took 5.37 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 1.83 µs per loop
%timeit foo(a)
The slowest run took 9.41 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 6.35 µs per loop
%timeit psi(a)
The slowest run took 9.66 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 9.95 µs per loop
答案 2 :(得分:10)
这是一个vanilla Python解决方案,只需一次通过:
>>> a = [2,1,2,3,4,5,4,6,5,7,8,9,8,10,11]
>>> b = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
>>> a_new, b_new = [], []
>>> last = float('-inf')
>>> for x, y in zip(a, b):
... if x > last:
... last = x
... a_new.append(x)
... b_new.append(y)
...
>>> a_new
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> b_new
[1, 4, 5, 6, 8, 10, 11, 12, 14, 15]
我很想知道它与numpy
解决方案的比较,它将具有相似的时间复杂度,但会对数据进行几次传递。
以下是一些时间安排。首先,设置:
>>> small = ([2,1,2,3,4,5,4,6,5,7,8,9,8,10,11], [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
>>> medium = (np.random.randint(1, 10000, (10000,)), np.random.randint(1, 10000, (10000,)))
>>> large = (np.random.randint(1, 10000000, (10000000,)), np.random.randint(1, 10000000, (10000000,)))
现在有两种方法:
>>> def monotonic(a, b):
... a_new, b_new = [], []
... last = float('-inf')
... for x,y in zip(a,b):
... if x > last:
... last = x
... a_new.append(x)
... b_new.append(y)
... return a_new, b_new
...
>>> def np_monotonic(a, b):
... a_new, idx = np.unique(np.maximum.accumulate(a), return_index=True)
... return a_new, b[idx]
...
注意,这些方法并不严格等同,一个停留在vanilla Python的土地上,另一个停留在numpy
阵列的土地上。假设您从相应的数据结构(numpy.array
或list
开始),我们将比较性能:
首先,一个小的列表,与OP的例子相同,我们看到numpy
实际上并不快,这对小型数据结构来说并不奇怪:
>>> timeit.timeit("monotonic(a,b)", "from __main__ import monotonic, small; a, b = small", number=10000)
0.039130652003223076
>>> timeit.timeit("np_monotonic(a,b)", "from __main__ import np_monotonic, small, np; a, b = np.array(small[0]), np.array(small[1])", number=10000)
0.10779813499539159
现在是10,000个元素的“中等”列表/数组,我们开始看到numpy
的优势:
>>> timeit.timeit("monotonic(a,b)", "from __main__ import monotonic, medium; a, b = medium[0].tolist(), medium[1].tolist()", number=10000)
4.642718859016895
>>> timeit.timeit("np_monotonic(a,b)", "from __main__ import np_monotonic, medium; a, b = medium", number=10000)
1.3776302759943064
现在,有趣的是,优势似乎缩小了“大”数组,大约为1e7元素:
>>> timeit.timeit("monotonic(a,b)", "from __main__ import monotonic, large; a, b = large[0].tolist(), large[1].tolist()", number=10)
4.400254560023313
>>> timeit.timeit("np_monotonic(a,b)", "from __main__ import np_monotonic, large; a, b = large", number=10)
3.593393853981979
请注意,在最后一对时间中,我每次只做了10次,但如果某人有更好的机器或更多的耐心,请随意增加number
答案 3 :(得分:10)
unique
与return_index
的{{1}}使用argsort
。不需要maximum.accumulate
。所以我们可以蚕食unique
并做:
In [313]: a = [2,1,2,3,4,5,4,6,5,7,8,9,8,10,11]
In [314]: arr = np.array(a)
In [315]: aux = np.maximum.accumulate(arr)
In [316]: flag = np.concatenate(([True], aux[1:] != aux[:-1])) # key unique step
In [317]: idx = np.nonzero(flag)
In [318]: idx
Out[318]: (array([ 0, 3, 4, 5, 7, 9, 10, 11, 13, 14], dtype=int32),)
In [319]: arr[idx]
Out[319]: array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
In [320]: np.array(b)[idx]
Out[320]: array([ 1, 4, 5, 6, 8, 10, 11, 12, 14, 15])
In [323]: np.unique(aux, return_index=True)[1]
Out[323]: array([ 0, 3, 4, 5, 7, 9, 10, 11, 13, 14], dtype=int32)
def foo(arr):
aux=np.maximum.accumulate(arr)
flag = np.concatenate(([True], aux[1:] != aux[:-1]))
return np.nonzero(flag)[0]
In [330]: timeit foo(arr)
....
100000 loops, best of 3: 12.5 µs per loop
In [331]: timeit np.unique(np.maximum.accumulate(arr), return_index=True)[1]
....
10000 loops, best of 3: 21.5 µs per loop
使用(10000,)形状medium
这种无排序的独特性具有显着的速度优势:
In [334]: timeit np.unique(np.maximum.accumulate(medium[0]), return_index=True)[1]
1000 loops, best of 3: 351 µs per loop
In [335]: timeit foo(medium[0])
The slowest run took 4.14 times longer ....
10000 loops, best of 3: 48.9 µs per loop
[1]:使用np.source(np.unique)
查看代码,或者??在IPython中
答案 4 :(得分:0)
a = [2, 1, 2, 3, 4, 5, 4, 6, 5, 7, 8, 9, 8,10,11]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15]
print(sorted(set(a)))
print(sorted(set(b)))
#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
#[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]