在numpy中返回类元素的向量

时间:2017-04-23 20:07:12

标签: python numpy

我可以使用numpy的vectorize函数来创建一些任意类的对象数组:

import numpy as np

class Body:
    """
    Simple class to represent a point mass in 2D space, more to 
    play with numpy than anything else...
    """

    def __init__(self, position, mass, velocity):
        self.position = position
        self.mass     = mass
        self.velocity = velocity

    def __repr__(self):
        return "m = {} p = {} v = {}".format(self.mass, 
                self.position, self.velocity)

if __name__ == '__main__':

    positions  = np.array([0 + 0j, 1 + 1j, 2 + 0j])
    masses     = np.array([2,      5,      1])
    velocities = np.array([0 + 0j, 0 + 1j, 1 + 0j])

    vBody  = np.vectorize(Body)

    points = vBody(positions, masses, velocities)

现在,如果我想从velocities数组中检索包含(例如)points的向量,我可以使用普通的Python列表推导

    v = [p.velocity for p in points]

但是有numpy - thonic方式吗?在大型数组上,这比使用列表推导更有效吗?

2 个答案:

答案 0 :(得分:3)

因此,我建议您不要将numpy数组与object dtype一起使用。但是,你在这里拥有的本质上是一个结构,所以你可以使用structured array使用numpy。首先,创建一个dtype

>>> import numpy as np
>>> bodytype = np.dtype([('position', np.complex), ('mass', np.float), ('velocity', np.complex)])

然后,初始化你的身体阵列:

>>> bodyarray = np.zeros((len(positions),), dtype=bodytype)
>>> bodyarray
array([(0j, 0.0, 0j), (0j, 0.0, 0j), (0j, 0.0, 0j)],
      dtype=[('position', '<c16'), ('mass', '<f8'), ('velocity', '<c16')])

现在,您可以轻松设置值:

>>> positions  = np.array([0 + 0j, 1 + 1j, 2 + 0j])
>>> masses     = np.array([2,      5,      1])
>>> velocities = np.array([0 + 0j, 0 + 1j, 1 + 0j])
>>> bodyarray['position'] = positions
>>> bodyarray['mass'] = masses
>>> bodyarray['velocity'] = velocities

现在你有了一系列“身体”,可以充分利用numpy,并让你像这样访问“属性”:

>>> bodyarray
array([(0j, 2.0, 0j), ((1+1j), 5.0, 1j), ((2+0j), 1.0, (1+0j))],
      dtype=[('position', '<c16'), ('mass', '<f8'), ('velocity', '<c16')])
>>> bodyarray['mass']
array([ 2.,  5.,  1.])
>>> bodyarray['velocity']
array([ 0.+0.j,  0.+1.j,  1.+0.j])
>>> bodyarray['position']
array([ 0.+0.j,  1.+1.j,  2.+0.j])
>>>

请注意,

>>> bodyarray.shape
(3,)

答案 1 :(得分:0)

创建点的直接列表理解方法:

In [285]: [Body(p,m,v) for p,m,v in zip(positions, masses,velocities)]
Out[285]: [m = 2 p = 0j v = 0j, m = 5 p = (1+1j) v = 1j, m = 1 p = (2+0j) v = (1+0j)]
In [286]: timeit [Body(p,m,v) for p,m,v in zip(positions, masses,velocities)]
100000 loops, best of 3: 6.74 µs per loop

为此,创建一个对象数组,frompyfuncnp.vectorize快(尽管你应该使用otypes和vectorize)。

In [287]: vBody  = np.frompyfunc(Body,3,1)
In [288]: vBody(positions, masses, velocities)
Out[288]: 
array([m = 2 p = 0j v = 0j, m = 5 p = (1+1j) v = 1j,
       m = 1 p = (2+0j) v = (1+0j)], dtype=object)

vectorize比理解慢,但这个frompyfunc版本具有竞争力

In [289]: timeit vBody(positions, masses, velocities)
The slowest run took 12.26 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 8.56 µs per loop

vectorize/frompyfunc在广播中添加了一些有用的功能。例如,通过使用ix_,我可以生成3个输入的笛卡尔积和3d积分,而不仅仅是3个:

In [290]: points = vBody(*np.ix_(positions, masses, velocities))
In [291]: points.shape
Out[291]: (3, 3, 3)
In [292]: points
Out[292]: 
array([[[m = 2 p = 0j v = 0j, m = 2 p = 0j v = 1j, m = 2 p = 0j v = (1+0j)],
 ....
        [m = 1 p = (2+0j) v = 0j, m = 1 p = (2+0j) v = 1j,
         m = 1 p = (2+0j) v = (1+0j)]]], dtype=object)
In [293]: 

简而言之,与列表相比,1d对象阵列的优点很少;只有当你需要组织2个或更多维度的对象时,这些数组才有优势。

至于访问属性,您可以使用列表推导或等效的vectorize操作。

[x.position for x in points.ravel()]
Out[294]: 
[0j,
 0j,
 0j,
 ...
 (2+0j),
 (2+0j)]
In [295]: vpos = np.frompyfunc(lambda x:x.position,1,1)
In [296]: vpos(points)
Out[296]: 
array([[[0j, 0j, 0j],
        [0j, 0j, 0j],
     ...
        [(2+0j), (2+0j), (2+0j)],
        [(2+0j), (2+0j), (2+0j)]]], dtype=object)

Tracking Python 2.7.x object attributes at class level to quickly construct numpy array

探讨了存储/访问对象属性的一些替代方法。