TensorFlow Nvidia 1070 GPU内存分配错误如何排除故障?

时间:2017-04-22 22:25:28

标签: tensorflow gpu

远射: Ubuntu 16.04 Nvidia 1070搭载8Gig?机器有64千兆内存和数据集是100万条记录和当前的cuda,cdnn库,TensorFlow 1.0 Python 3.6

不确定如何解决问题?

我一直致力于使用TensorFlow获得一些模型并且多次遇到这种现象:除了使用GPU内存的TensorFlow之外,我不知道其他任何事情吗?

I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: name: GeForce GTX 1070 major: 6 minor: 1 memoryClockRate (GHz) 1.645 pciBusID 0000:01:00.0 Total memory: 7.92GiB Free memory: 7.56GiB I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0) E tensorflow/stream_executor/cuda/cuda_driver.cc:1002] failed to allocate 7.92G (8499298304 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY E tensorflow/stream_executor/cuda/cuda_driver.cc:1002] failed to allocate 1.50G (1614867456 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY E tensorflow/stream_executor/cuda/cuda_driver.cc:1002] failed to allocate 1.50G (1614867456 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY E tensorflow/stream_executor/cuda/cu

以下我得到的结果表明正在进行某种内存分配?但仍然失败。

`I tensorflow/core/common_runtime/bfc_allocator.cc:696] 5 Chunks of size 899200000 totalling 4.19GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] 1 Chunks of size 1649756928 totalling 1.54GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:700] Sum Total of in-use chunks: 6.40GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:702] Stats: 
Limit:                  8499298304
InUse:                  6875780608
MaxInUse:               6878976000
NumAllocs:                     338
MaxAllocSize:           1649756928

W tensorflow/core/common_runtime/bfc_allocator.cc:274] ******************************************************************************************xxxxxxxxxx
W tensorflow/core/common_runtime/bfc_allocator.cc:275] Ran out of memory trying to allocate 6.10MiB.  See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:993] Internal: Dst tensor is not initialized.
     [[Node: linear/linear/marital_status/marital_status_weights/embedding_lookup_sparse/strided_slice/_1055 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_1643_linear/linear/marital_status/marital_status_weights/embedding_lookup_sparse/strided_slice", tensor_type=DT_INT64, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

` 更新:我将记录数量从数百万减少到40,000,并获得了基本模型以完成运行。我仍然收到错误消息,但不是连续的消息。我在模型输出中得到一堆文本,建议重组模型,我怀疑数据结构是问题的一个重要部分。仍然可以使用一些更好的提示来了解如何调试整个过程。下面是剩余的控制台输出

I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: 
name: GeForce GTX 1070
major: 6 minor: 1 memoryClockRate (GHz) 1.645
pciBusID 0000:01:00.0
Total memory: 7.92GiB
Free memory: 7.52GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0)
E tensorflow/stream_executor/cuda/cuda_driver.cc:1002] failed to allocate 7.92G (8499298304 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
[I 09:13:09.297 NotebookApp] Saving file at /Documents/InfluenceH/Working_copies/Cond_fcast_wkg/TensorFlow+DNNLinearCombinedClassifier+for+Influence.ipynb
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0)

1 个答案:

答案 0 :(得分:1)

我认为问题在于TensorFlow尝试分配7.92GB的GPU内存,而实际上只有7.56GB的内存空闲。我无法告诉你其余GPU内存占用的原因,但你可以通过限制程序允许分配的GPU内存比例来避免这个问题:

sess_config = tf.ConfigProto()
sess_config.gpu_options.per_process_gpu_memory_fraction = 0.9
with tf.Session(config=sess_config, ...) as ...:

有了这个,该程序将只分配90%的GPU内存,即7.13GB。