给出如下数据框:
A B C
1 a yes
2 b yes
3 a no
我想将数据框更改为:
A B C
1 a yes
2 b no
3 a no
这意味着如果列B的值为'b',我想将列C更改为'no'。哪个可以用df[df['B']=='b']['C'].str.replace('yes','no')
表示。但是使用它不会改变数据帧df
本身。即使我试过df[df['B']=='b']['C'] = df[df['B']=='b']['C'].str.replace('yes','no')
它也没用。我想知道如何解决这个问题。
答案 0 :(得分:5)
mask
设置值的解决方案:
df.loc[df.B == 'b', 'C'] = 'no'
print (df)
A B C
0 1 a yes
1 2 b no
2 3 a no
df['C'] = df['C'].mask(df.B == 'b','no')
print (df)
A B C
0 1 a yes
1 2 b no
2 3 a no
仅替换yes
字符串的解决方案:
df.loc[df.B == 'b', 'C'] = df['C'].replace('yes', 'no')
print (df)
A B C
0 1 a yes
1 2 b no
2 3 a no
df['C'] = df['C'].mask(df.B == 'b', df['C'].replace('yes', 'no'))
print (df)
A B C
0 1 a yes
1 2 b no
2 3 a no
在更改的df
中更好地看到差异:
print (df)
A B C
0 1 a yes
1 2 b yes
2 3 b another
3 4 a no
df['C_set'] = df['C'].mask(df.B == 'b','no')
df['C_replace'] = df['C'].mask(df.B == 'b', df['C'].replace('yes', 'no'))
print (df)
A B C C_set C_replace
0 1 a yes yes yes
1 2 b yes no no
2 3 b another no another
3 4 a no no no
编辑:
在您的解决方案中,只需添加loc
:
df.loc[df['B']=='b', 'C'] = df.loc[df['B']=='b', 'C'].str.replace('yes','no')
print (df)
A B C
0 1 a yes
1 2 b no
2 3 b another
3 4 a no
EDIT1:
我真的很好奇什么方法最快:
#[40000 rows x 3 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
print (df)
In [37]: %timeit df.loc[df['B']=='b', 'C'] = df['C'].str.replace('yes','no')
10 loops, best of 3: 79.5 ms per loop
In [38]: %timeit df.loc[df['B']=='b', 'C'] = df.loc[df['B']=='b','C'].str.replace('yes','no')
10 loops, best of 3: 48.4 ms per loop
In [39]: %timeit df.loc[df['B']=='b', 'C'] = df.loc[df['B']=='b', 'C'].replace('yes','no')
100 loops, best of 3: 14.1 ms per loop
In [40]: %timeit df['C'] = df['C'].mask(df.B == 'b', df['C'].replace('yes', 'no'))
100 loops, best of 3: 10.1 ms per loop
# piRSquared solution with replace
In [53]: %timeit df.C = np.where(df.B.values == 'b', df.C.replace('yes', 'no'), df.C.values)
100 loops, best of 3: 4.74 ms per loop
EDIT1:
更好的是更改条件 - 如果需要最快的解决方案,请添加df.C == 'yes'
或df.C.values == 'yes'
:
df.loc[(df.B == 'b') & (df.C == 'yes'), 'C'] = 'no'
df.C = np.where((df.B.values == 'b') & (df.C.values == 'yes'), 'no', df.C.values)
答案 1 :(得分:4)
<强> np.where
强>
df.C = np.where(df.B == 'b', 'no', df.C)
或者
df.C = np.where(df.B.values == 'b', 'no', df.C.values)
<强> pd.Series.mask
强>
df.C = df.C.mask(df.B == 'b', 'no')
所有更改df
到位并产量
A B C
0 1 a yes
1 2 b no
2 3 a no