我想应用概率神经网络。我的data.csv
文件包含第一列中的值。值是浮点值。我遇到了以下错误:
回溯(最近一次调用最后一次):文件" G:/Setups/Python/pnn-1.py", 第10行,在 input_dataset_target = genfromtxt(filename,delimiter =',',skip_header = 0,usecols =(TARGET_COLUMN-1))文件 " G:\ Setups \ Python \ lib \ site-packages \ numpy \ lib \ npyio.py",第1769行, genfromtxt 提出ValueError(errmsg)
我执行的代码:
import numpy as np
from sklearn.cross_validation import StratifiedKFold
from neupy.algorithms import PNN
filename = "data.csv"
TARGET_COLUMN = 2
from numpy import genfromtxt
input_dataset_data =
genfromtxt(filename,delimiter=',',skip_header=0,usecols=
(range(0,TARGET_COLUMN-1)))
input_dataset_target = genfromtxt(filename, delimiter=',', skip_header=0,
usecols=(TARGET_COLUMN-1))
kfold_number = 2
skfold = StratifiedKFOld(input_dataset_target, kfold_number, shuffle=True)
average_result = 0
print("> Start classify input_dataset dataset")
for i, (train, test) in enumerate(skfold, start=1):
pnn_network = PNN(std=0.1, step=0.2, verbose=True)
pnn_network.train(input_dataset_data[train], input_dataset_target[train])
predictions = pnn_network.predict(input_dataset_data[test])
print(predictions)
#print(input_dataset_target[test])
mcc = matthews_corrcoef(input_dataset_target[test], predictions)
print ("The Matthews correlation coefficient is %f" % mcc)
print("kfold #{:<2}: Guessed {} out of {}".format(
i, np.sum(predictions == input_dataset_target[test]), test.size
))