在MatPlotLib

时间:2017-04-22 02:18:52

标签: matplotlib

我设法找到并自定义了一些matplotlib代码来创建分组条形图。但是,代码顶部没有标签。我尝试了几种方法,但我还没有做好。

我的最终目标是:

  1. 将数据标签添加到每个栏的顶部
  2. 摆脱外围的黑色边框和y轴标签
  3. 非常感谢任何帮助(尤其是#1)!

    代码:

    #Code adapted from:  
    #https://chrisalbon.com/python/matplotlib_grouped_bar_plot.html
    #matplotlib online
    
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    
    
    raw_data = {'plan_type': ['A1', 'A2', 'A3', 'A4', 'A5', 'A6'],
            'Group A':     [100, 0, 0, 0, 0, 0],
            'Group B':     [48, 16, 9, 22, 5, 0],
            'Group C':     [18, 28, 84, 34, 11, 0],
            'Group D': [49, 13, 7, 23, 6, 0],
            'Group E':          [57, 16, 9, 26, 3, 0]
    
        }
    df = pd.DataFrame(raw_data, columns = ['plan_type', 'Group B', 'Group C', 'Group D', 'Group E'])
    
    
    df2 =pd.DataFrame(raw_data, columns = ['plan_type', 'Group A'])
    
    
    
    # Setting the positions and width for the bars
    pos = list(range(len(df['Group B'])))
    width = 0.2
    
    # Plotting the bars
    fig, ax = plt.subplots(figsize=(7, 2))
    
    
    #This creates another y-axis that shares the same x-axis
    
    
    # Create a bar with Group A data,
    # in position pos + some width buffer,
    plt.bar(pos,
        #using df['Group E'] data,
        df2['Group A'],
        # of width
        width*8,
        # with alpha 0.5
        alpha=1,
        # with color
        color='#E6E9ED',
        # with label the fourth value in plan_type
        label=df2['plan_type'][0])
    
    
    # Create a bar with Group B data,
    # in position pos,
    plt.bar(pos,
        #using df['Group B'] data,
        df['Group B'],
        # of width
        width,
        # with alpha 1  
        alpha=1,
        # with color
        color='#900C3F',
        # with label the first value in plan_type
        label=df['plan_type'][0])
    
    # Create a bar with Group C data,
    # in position pos + some width buffer,
    plt.bar([p + width for p in pos],
        #using df['Group C'] data,
        df['Group C'],
        # of width
        width,
        # with alpha 1
        alpha=1.0,
        # with color
        color='#C70039',
        # with label the second value in plan_type
        label=df['plan_type'][1])
    
    # Create a bar with Group D data,
    # in position pos + some width buffer,
    plt.bar([p + width*2 for p in pos],
        #using df['Group D'] data,
        df['Group D'],
        # of width
        width,
        # with alpha 1
        alpha=1,
        # with color
        color='#FF5733',
        # with label the third value in plan_type
        label=df['plan_type'][2])
    
    # Create a bar with Group E data,
    # in position pos + some width buffer,
    plt.bar([p + width*3 for p in pos],
        #using df['Group E'] data,
        df['Group E'],
        # of width
        width,
        # with alpha 1
        alpha=1,
        # with color
        color='#FFC300',
        # with label the fourth value in plan_type
        label=df['plan_type'][3])
    
    
    # Set the y axis label
    ax.set_ylabel('Percent')
    
    # Set the chart's title
    ax.set_title('A GRAPH - YAY!', fontweight = "bold")
    
    # Set the position of the x ticks
    ax.set_xticks([p + 1.5 * width for p in pos])
    
    # Set the labels for the x ticks
    ax.set_xticklabels(df['plan_type'])
    
    # Setting the x-axis and y-axis limits
    plt.xlim(min(pos)-width, max(pos)+width*5)
    plt.ylim([0, 100] )
    #plt.ylim([0, max(df['Group B'] + df['Group C'] + df['Group D'] + df['Group E'])] )
    
    # Adding the legend and showing the plot.  Upper center location, 5 columns, 
    Expanded to fit on one line.
    plt.legend(['Group A','Group B', 'Group C', 'Group D', 'Group E'], loc='upper center', ncol=5, mode='expand', fontsize  ='x-small')
    
    #plt.grid()  --> This would add a Grid, but I don't want that.
    
    plt.show()
    plt.savefig("PlanOffered.jpg")
    

1 个答案:

答案 0 :(得分:1)

解决方案类似于此问题中的解决方案: Adding value labels on a matplotlib bar chart

但是我提供了一个使用你自己的情节类型的例子,因此更容易理解。

为了在条形图上获得标签,一般的想法是迭代轴内的补丁并用它们尊重的高度注释它们。

enter image description here

我稍微简化了代码。

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

raw_data = {'plan_type': ['A1', 'A2', 'A3', 'A4', 'A5', 'A6'],
        'Group A':     [100, 0, 0, 0, 0, 0],
        'Group B':     [48, 16, 9, 22, 5, 0],
        'Group C':     [18, 28, 84, 34, 11, 0],
        'Group D': [49, 13, 7, 23, 6, 0],
        'Group E':          [57, 16, 9, 26, 3, 0]

    }
df2 =pd.DataFrame(raw_data, columns = ['plan_type', 'Group A'])
df = pd.DataFrame(raw_data, 
                  columns = ['plan_type', 'Group B', 'Group C', 'Group D', 'Group E'])

ax = df2.plot.bar(rot=0,color='#E6E9ED',width=1)
ax = df.plot.bar(rot=0, ax=ax, color=["#900C3F", '#C70039', '#FF5733', '#FFC300'], 
                 width = 0.8 )

for p in ax.patches[1:]:
    h = p.get_height()
    x = p.get_x()+p.get_width()/2.
    if h != 0:
        ax.annotate("%g" % p.get_height(), xy=(x,h), xytext=(0,4), rotation=90, 
                   textcoords="offset points", ha="center", va="bottom")

ax.set_xlim(-0.5, None)
ax.margins(y=0)
ax.legend(ncol=len(df.columns), loc="lower left", bbox_to_anchor=(0,1.02,1,0.08), 
          borderaxespad=0, mode="expand")
ax.set_xticklabels(df["plan_type"])
plt.show()