我试图弄清楚如何从具有点的最佳拟合线确定斜率趋势。基本上,一旦我有斜率的趋势,我想在同一图中用该趋势绘制多个其他线。例如:
这个情节基本上是我想做的,但我不知道该怎么做。正如您所看到的,它有几条最佳拟合线,其中的点具有斜率并且在x = 6处相交。在这些线之后,它有几条线基于来自其他斜坡的趋势。我假设使用这段代码我可以做类似的事情,但我不确定如何操纵代码来做我想做的事。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# simulate some artificial data
# =====================================
df = pd.DataFrame( { 'Age' : np.random.rand(25) * 160 } )
df['Length'] = df['Age'] * 0.88 + np.random.rand(25) * 5000
# plot those data points
# ==============================
fig, ax = plt.subplots()
ax.scatter(df['Length'], df['Age'])
# Now add on a line with a fixed slope of 0.03
slope = 0.03
# A line with a fixed slope can intercept the axis
# anywhere so we're going to have it go through 0,0
x_0 = 0
y_0 = 0
# And we'll have the line stop at x = 5000
x_1 = 5000
y_1 = slope (x_1 - x_0) + y_0
# Draw these two points with big triangles to make it clear
# where they lie
ax.scatter([x_0, x_1], [y_0, y_1], marker='^', s=150, c='r')
# And now connect them
ax.plot([x_0, x_1], [y_0, y_1], c='r')
plt.show()
答案 0 :(得分:4)
使用boundary
和y_1
给出的直线方程可以找到值slope
:
y_0
产生以下图表:
为了绘制多条线,首先创建一个将使用的渐变数组/列表,然后按照相同的步骤操作:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'Age': np.random.rand(25) * 160})
df['Length'] = df['Age'] * 0.88 + np.random.rand(25) * 5000
fig, ax = plt.subplots()
ax.scatter(df['Length'], df['Age'])
slope = 0.03
x_0 = 0
y_0 = 0
x_1 = 5000
y_1 = (slope * x_1) + y_0 # equation of a straight line: y = mx + c
ax.plot([x_0, x_1], [y_0, y_1], marker='^', markersize=10, c='r')
plt.show()
这产生了下图:
答案 1 :(得分:1)
我刚刚修改了你的代码。基本上你需要的是一个分段函数。在某个值下,你有不同的斜率,但最终都是3000,之后斜率只有0。
情节如下:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# simulate some artificial data
# =====================================
df = pd.DataFrame( { 'Age' : np.random.rand(25) * 160 } )
df['Length'] = df['Age'] * 0.88 + np.random.rand(25) * 5000
# plot those data points
# ==============================
fig, ax = plt.subplots()
ax.scatter(df['Length'], df['Age'])
# Now add on a line with a fixed slope of 0.03
#slope1 = -0.03
slope1 = np.arange(-0.05, 0, 0.01)
slope2 = 0
# A line with a fixed slope can intercept the axis
# anywhere so we're going to have it go through 0,0
x_0 = 0
y_1 = 0
# And we'll have the line stop at x = 5000
for slope in slope1:
x_1 = 3000
y_0 = y_1 - slope * (x_1 - x_0)
ax.plot([x_0, x_1], [y_0, y_1], c='r')
x_2 = 5000
y_2 = slope2 * (x_2 - x_1) + y_1
# Draw these two points with big triangles to make it clear
# where they lie
ax.scatter([x_0, x_1], [y_0, y_1], marker='^', s=150, c='r')
# And now connect them
ax.plot([x_1, x_2], [y_1, y_2], c='r')
plt.show()