我有一个pandas数据框如下:
'domain': [('purchase_id', '=', self.id)]
我的身份证号码是:" request_id"和" crash_id",目标变量是nu_acc_x,num_acc_y和num_acc_z 我想创建一个新的DataFrame,其中目标变量被广泛重新整形,即添加max(counter)* 3个新变量,如num_acc_x_0,num_acc_x_1,... num_acc_y_0,num_acc_y_1,... num_acc_z_0,num_acc_z_1,可能没有枢轴最终结果(我希望在R中使用真正的DataFrame。)
提前感谢您的关注
答案 0 :(得分:2)
我认为您需要使用set_index
unstack
,最后通过MultiIndex
从map
创建列名:
df = df.set_index(['request_id','crash_id','counter']).unstack()
df.columns = df.columns.map(lambda x: '{}_{}'.format(x[0], x[1]))
df = df.reset_index()
print (df)
request_id crash_id num_acc_x_0 num_acc_x_1 num_acc_x_2 \
0 745109.0 670140638.0 0.01 0.016 0.016
num_acc_y_0 num_acc_y_1 num_acc_y_2 num_acc_z_0 num_acc_z_1 \
0 0.0 -0.006 -0.006 -0.045 -0.034
num_acc_z_2
0 -0.034
使用pivot_table
聚合重复的另一种解决方案:
df = df.pivot_table(index=['request_id','crash_id'], columns='counter', aggfunc='mean')
df.columns = df.columns.map(lambda x: '{}_{}'.format(x[0], x[1]))
df = df.reset_index()
print (df)
request_id crash_id num_acc_x_0 num_acc_x_1 num_acc_x_2 \
0 745109.0 670140638.0 0.01 0.016 0.016
num_acc_y_0 num_acc_y_1 num_acc_y_2 num_acc_z_0 num_acc_z_1 \
0 0.0 -0.006 -0.006 -0.045 -0.034
num_acc_z_2
0 -0.034
df = df.groupby(['request_id','crash_id','counter']).mean().unstack()
df.columns = df.columns.map(lambda x: '{}_{}'.format(x[0], x[1]))
df = df.reset_index()
print (df)
request_id crash_id num_acc_x_0 num_acc_x_1 num_acc_x_2 \
0 745109.0 670140638.0 0.01 0.016 0.016
num_acc_y_0 num_acc_y_1 num_acc_y_2 num_acc_z_0 num_acc_z_1 \
0 0.0 -0.006 -0.006 -0.045 -0.034
num_acc_z_2
0 -0.034