我正在尝试对从Yahoo检索到的数据实施quantreg
分位数回归函数。看来我需要对库存数据执行一个过程,以便rq()
函数可以读取数据。我不知道该怎么做。我的问题是如何将stocj数据转换为rq
函数能够读取的格式。感谢
# Quantile Regression Fit Stock data
# Get Library
library(quantmod)
library(quantreg)
# Get Stock Data
stk1 <- getSymbols("DD", from="2009-12-31", auto.assign=FALSE)
stk2 <- getSymbols("GE", from="2009-12-31", auto.assign=FALSE)
#median (l1) regression fit for the stock data.
rq(stk1 ~ stk2.x,.5)
#the 1st quartile,
rq(stk1 ~ stk2.x,.25)
#note that 8 of the 21 points lie exactly on this plane in 4-space!
#this returns the full rq process
rq(stk1 ~ stk2.x, tau=-1)
#ordinary sample median --no rank inversion ci
rq(rnorm(50) ~ 1, ci=FALSE)
#weighted sample median
rq(rnorm(50) ~ 1, weights=runif(50),ci=FALSE)
答案 0 :(得分:0)
我在发布代码时犯了一个错误。它应该是stk1和stk2
# Get Library
library(quantmod)
library(quantreg)
# Get Stock Data
stk1 <- getSymbols("DD", from="2009-12-31", auto.assign=FALSE)
stk2 <- getSymbols("GE", from="2009-12-31", auto.assign=FALSE)
#median (l1) regression fit for the stock data.
rq(stk1 ~ stk2.x,.5)
#the 1st quartile,
rq(stk1 ~ stk2.x,.25)
#note that 8 of the 21 points lie exactly on this plane in 4-space!
#this returns the full rq process
rq(stk1 ~ stk2.x, tau=-1)
#ordinary sample median --no rank inversion ci
rq(rnorm(50) ~ 1, ci=FALSE)
#weighted sample median
rq(rnorm(50) ~ 1, weights=runif(50),ci=FALSE)
答案 1 :(得分:0)
您似乎回归价格水平,这很容易受到Granger和Newbold所谓的“虚假回归”的影响。您可能希望首先转换为返回值,quantmod包等可以帮助解决这个问题。