我在Pandas中创建了一个如下所示的数据框:
disadvantaged_team seconds_left num_ic_inc
0 ATL 5 2
disadvantaged_team seconds_left num_ic_inc
1 ATL 10 2
disadvantaged_team seconds_left num_ic_inc
2 ATL 15 4
disadvantaged_team seconds_left num_ic_inc
3 ATL 20 1
disadvantaged_team seconds_left num_ic_inc
4 ATL 25 1
disadvantaged_team seconds_left num_ic_inc
5 ATL 30 3
disadvantaged_team seconds_left num_ic_inc
6 ATL 40 2
disadvantaged_team seconds_left num_ic_inc
7 ATL 45 3
disadvantaged_team seconds_left num_ic_inc
8 ATL 50 1
disadvantaged_team seconds_left num_ic_inc
9 ATL 55 3
disadvantaged_team seconds_left num_ic_inc
10 ATL 60 3
disadvantaged_team seconds_left num_ic_inc
11 ATL 65 1
disadvantaged_team seconds_left num_ic_inc
12 ATL 70 1
disadvantaged_team seconds_left num_ic_inc
13 ATL 75 2
disadvantaged_team seconds_left num_ic_inc
14 ATL 85 3
disadvantaged_team seconds_left num_ic_inc
15 ATL 90 1
disadvantaged_team seconds_left num_ic_inc
16 ATL 95 2
disadvantaged_team seconds_left num_ic_inc
17 ATL 110 2
disadvantaged_team seconds_left num_ic_inc
18 ATL 115 2
disadvantaged_team seconds_left num_ic_inc
19 ATL 120 1
disadvantaged_team seconds_left num_ic_inc
20 ATL 197 1
disadvantaged_team seconds_left num_ic_inc
21 ATL 278 1
disadvantaged_team seconds_left num_ic_inc
22 BKN 5 2
disadvantaged_team seconds_left num_ic_inc
23 BKN 10 1
disadvantaged_team seconds_left num_ic_inc
24 BKN 15 4
disadvantaged_team seconds_left num_ic_inc
25 BKN 20 2
disadvantaged_team seconds_left num_ic_inc
26 BKN 25 1
disadvantaged_team seconds_left num_ic_inc
27 BKN 30 1
disadvantaged_team seconds_left num_ic_inc
28 BKN 40 1
disadvantaged_team seconds_left num_ic_inc
29 BKN 45 1
disadvantaged_team seconds_left num_ic_inc
30 BKN 50 2
disadvantaged_team seconds_left num_ic_inc
31 BKN 55 1
disadvantaged_team seconds_left num_ic_inc
32 BKN 60 1
disadvantaged_team seconds_left num_ic_inc
33 BKN 70 1
disadvantaged_team seconds_left num_ic_inc
34 BKN 75 1
disadvantaged_team seconds_left num_ic_inc
35 BKN 80 1
disadvantaged_team seconds_left num_ic_inc
36 BKN 85 1
disadvantaged_team seconds_left num_ic_inc
37 BKN 90 1
disadvantaged_team seconds_left num_ic_inc
38 BKN 95 1
disadvantaged_team seconds_left num_ic_inc
现在我想将结果写入csv文件,具体取决于团队,例如包含ATL的所有行应该在一个文件中,而在另一个文件中包含BKN。我已经使用iterrows()将每一行写入一个单独的文件,但正如我所说,我希望团队中的所有行都在一个csv中。
感谢您的帮助
答案 0 :(得分:2)
for value in df['disadvantaged_team'].unique():
df[df['disadvantaged_team'] == value].to_csv(value + '.csv')
未选中,但逻辑成立:
1)获取系列中所有唯一值的列表
2)使用值来过滤主df
3)将结果写入CSV
答案 1 :(得分:0)
一个快速解决方案可以分组:
for g,f in df.groupby("disadvantaged_team"):
f.to_csv(g+'.csv')
或以其他方式:
df.groupby("disadvantaged_team").apply(lambda f : f.to_csv(x["disadvantaged_team"].max()+'.csv'))