我正在尝试在张量板上绘制一个简单的情节,就像他们在主页上有这样的情节一样:
import tensorflow as tf
import numpy as np
x = tf.placeholder('float',name='X')
y= tf.placeholder('float',name='y')
addition = tf.add(x,y)
with tf.Session() as sess:
for i in range(100):
var1= np.random.rand()
var2= np.random.rand()
print(var1,var2)
tf.summary.scalar('addition',sess.run(addition, feed_dict={x:var1,y:var2}))
writer = tf.summary.FileWriter('Graphs',sess.graph)
虽然我可以看到图表,但我看不到任何标量值。可以向我解释我在这里做错了什么吗? PS:我已经运行了所有正式的例子,他们都在工作,但我需要理解这个例子才能使用它。 谢谢你的帮助 !
更新
运行@ dv3代码后程序崩溃。这就是我得到的:
InvalidArgumentError: You must feed a value for placeholder tensor 'input/x-input' with dtype float
[[Node: input/x-input = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-5-5cbd77e71936> in <module>()
14 var2= np.random.rand()
15 print(var1,var2)
---> 16 add, s_ = sess.run([addition, summary_op], feed_dict={x:var1,y:var2})
17 writer.add_summary(s_, i)
答案 0 :(得分:3)
所以马上,我想建议阅读this。它会详细介绍会话的内容。
关于代码及其产生结果的原因:您没有初始化变量。您可以使用sess.run(tf.global_variables_initializer())
执行此操作。所以你的代码是:
import tensorflow as tf
import numpy as np
x = tf.placeholder('float',name='X')
y= tf.placeholder('float',name='y')
addition = tf.add(x,y)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
var1= np.random.rand()
var2= np.random.rand()
print(var1,var2)
tf.summary.scalar('addition',sess.run(addition, feed_dict={x:var1,y:var2}))
writer = tf.summary.FileWriter('Graphs',sess.graph)
我不会将sess.run嵌入到summary.scalar调用中,但是对于这个简单的例子,你会得到一些结果。
修改强> 测试,这实际上是有效的:
import tensorflow as tf
import numpy as np
x = tf.placeholder('float',name='X')
y= tf.placeholder('float',name='y')
addition = tf.add(x,y, name='add')
tf.summary.scalar('addition', addition)
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter('Graphs',sess.graph)
for i in range(100):
var1= np.random.rand()
var2= np.random.rand()
print(var1,var2)
add, s_ = sess.run([addition, summary_op], feed_dict={x:var1,y:var2})
writer.add_summary(s_, i)