Tensorflow代码不使用GPU

时间:2017-04-20 03:09:42

标签: python tensorflow gpu nvidia

我在Ubuntu 14.04上运行Nvidia GTX 1080。我正在尝试使用tensorflow 1.0.1实现卷积自动编码器,但该程序似乎根本不使用GPU。我使用watch nvidia-smihtop对此进行了验证。运行程序后的输出如下:

  1 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
  2 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
  3 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
  4 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
  5 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
  6 Extracting MNIST_data/train-images-idx3-ubyte.gz
  7 Extracting MNIST_data/train-labels-idx1-ubyte.gz
  8 Extracting MNIST_data/t10k-images-idx3-ubyte.gz
  9 Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
 10 getting into solving the reconstruction loss
 11 Dimension of z i.e. our latent vector is [None, 100]
 12 Dimension of the output of the decoder is [100, 28, 28, 1]
 13 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available     on your machine and could speed up CPU computations.
 14 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are availab    le on your machine and could speed up CPU computations.
 15 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are availab    le on your machine and could speed up CPU computations.
 16 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available     on your machine and could speed up CPU computations.
 17 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available     on your machine and could speed up CPU computations.
 18 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available     on your machine and could speed up CPU computations.
 19 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
 20 name: GeForce GTX 1080
 21 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
 22 pciBusID 0000:0a:00.0
 23 Total memory: 7.92GiB
 24 Free memory: 7.81GiB
 25 W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x34bccc0
 26 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 1 with properties: 
 27 name: GeForce GTX 1080
 28 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
 29 pciBusID 0000:09:00.0
 30 Total memory: 7.92GiB
 31 Free memory: 7.81GiB
 32 W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x34c0940
 33 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 2 with properties:
 34 name: GeForce GTX 1080
 35 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
 36 pciBusID 0000:06:00.0
 37 Total memory: 7.92GiB
 38 Free memory: 7.81GiB
 39 W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x34c45c0
 40 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 3 with properties:
 41 name: GeForce GTX 1080
 42 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
 43 pciBusID 0000:05:00.0
 44 Total memory: 7.92GiB
 45 Free memory: 7.81GiB
 46 I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 1 2 3
 47 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y Y Y Y
 48 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 1:   Y Y Y Y
 49 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 2:   Y Y Y Y
 50 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 3:   Y Y Y Y
 51 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus i    d: 0000:0a:00.0)
 52 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080, pci bus i    d: 0000:09:00.0)
 53 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:2) -> (device: 2, name: GeForce GTX 1080, pci bus i    d: 0000:06:00.0)
 54 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:3) -> (device: 3, name: GeForce GTX 1080, pci bus i    d: 0000:05:00.0)

我的代码中是否存在问题,我还尝试在构建图表之前使用with tf.device("/gpu:0"):指定它以使用特定设备。如果需要任何进一步的信息,请告诉我。

编辑1 输出nvidia-smi

exx@ubuntu:~$ nvidia-smi
Wed Apr 19 20:50:07 2017       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.48                 Driver Version: 367.48                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1080    Off  | 0000:05:00.0     Off |                  N/A |
| 38%   54C    P8    12W / 180W |   7715MiB /  8113MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 1080    Off  | 0000:06:00.0     Off |                  N/A |
| 38%   55C    P8     8W / 180W |   7715MiB /  8113MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GeForce GTX 1080    Off  | 0000:09:00.0     Off |                  N/A |
| 36%   50C    P8     8W / 180W |   7715MiB /  8113MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  GeForce GTX 1080    Off  | 0000:0A:00.0     Off |                  N/A |
| 35%   54C    P2    41W / 180W |   7833MiB /  8113MiB |      8%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0     24228    C   python3                                       7713MiB |
|    1     24228    C   python3                                       7713MiB |
|    2     24228    C   python3                                       7713MiB |
|    3     24228    C   python3                                       7831MiB |
+-----------------------------------------------------------------------------+

htop显示它使用了其中一个CPU核心的大约100%。我说它不使用gpu的基础是因为GPU使用率%。它显示8%,但通常为0%。

1 个答案:

答案 0 :(得分:0)

所以你在GPU上运行,从这个角度来看,一切都是正确配置的,但速度真的很糟糕。确保你多次运行nvidia-smi以了解它的工作方式,它可能会显示100%,8%显示另一个。

从GPU获得大约80%的利用率是正常的,因为在每次运行之前将每个批次从核心内存加载到GPU会有时间丢失(很快就会出现新功能)为了改善这一点,GPU队列在TF)。

如果您从GPU中获得的性能低于约80%,那么您做错了。我想到了两种可能的常见原因:

1)您在步骤之间进行了一系列预处理,因此GPU运行速度很快,但是您在单个CPU线程上阻止了一堆非张量流工作。将其移动到自己的线程,从python Queue

将数据加载到GPU

2)大块数据正在CPU和GPU内存之间来回移动。如果你这样做,CPU和GPU之间的带宽可能成为瓶颈。

尝试在训练/推理批次开始和结束之间添加一些计时器,看看你是否在tensorflow操作之外花了很多时间。