l = [1,0,0,1,1]
count = 0
start = time()
for _ in range(100000):
for x in range(len(l)-1):
for y in range(x+1, len(l)):
if l[x] + l[y] == 1:
count += 1
end = time()
count2 = 0
start2 = time()
for _ in range(100000):
for x in range(len(l)-1):
for y in range(x+1, len(l)):
if l[x]^l[y]:
count2 += 1
end2 = time()
print str(count) + ' : Add and compare took: ' + str((end - start)/100000)
print str(count2) + ' : Bitwise took: ' + str((end2 - start2)/100000)
根据我对按位操作的理解,它们应该比简单的比较更快。然而,这两个循环最终都是完全相同的速度(没有过分挑剔)。
当整数比较看起来同样快时,使用可以说更复杂的按位运算比整数比较有什么好处?
编辑:
看来,操作码并非都是平等的。
奥斯汀的回答提到两个操作之间的差异是3个操作码对比1,但是,以下示例具有相同数量的操作码,但性能明显不同:i = j = 10
def test1():
if i == j:
print True
def test2():
if not i-j:
print True
print 'test 1'
start1 = time()
test1()
end1 = time()
dis(test1)
print 'test 2'
start2 = time()
test2()
end2 = time()
dis(test2)
print 'Test 1 took: ' + str(end1 - start1)
print 'Test 2 took: ' + str(end2 - start2)
这将输出:
test 1
True
25 0 LOAD_GLOBAL 0 (i)
3 LOAD_GLOBAL 1 (j)
6 COMPARE_OP 2 (==)
9 POP_JUMP_IF_FALSE 20
26 12 LOAD_GLOBAL 2 (True)
15 PRINT_ITEM
16 PRINT_NEWLINE
17 JUMP_FORWARD 0 (to 20)
>> 20 LOAD_CONST 0 (None)
23 RETURN_VALUE
test 2
True
29 0 LOAD_GLOBAL 0 (i)
3 LOAD_GLOBAL 1 (j)
6 BINARY_SUBTRACT
7 POP_JUMP_IF_TRUE 18
30 10 LOAD_GLOBAL 2 (True)
13 PRINT_ITEM
14 PRINT_NEWLINE
15 JUMP_FORWARD 0 (to 18)
>> 18 LOAD_CONST 0 (None)
21 RETURN_VALUE
Test 1 took: 7.86781311035e-06
Test 2 took: 5.00679016113e-06
有更准确的衡量效率的方法吗?
编辑:
创建的操作码几乎相等。
修改代码以排除令人讨厌的I / O,这说明I / O存在问题的原因。
i = j = 10
bool1 = False
bool2 = False
def test1():
if i == j:
bool1 = True
def test2():
if not i-j:
bool2 = True
print 'test 1'
start1 = time()
for _ in range(1000000):
test1()
end1 = time()
dis(test1)
print 'test 2'
start2 = time()
for _ in range(1000000):
test2()
end2 = time()
dis(test2)
print str(bool1) + ' : Test 1 took: ' + str(end1 - start1)
print str(bool2) + ' : Test 2 took: ' + str(end2 - start2)
将打印:
test 1
27 0 LOAD_GLOBAL 0 (i)
3 LOAD_GLOBAL 1 (j)
6 COMPARE_OP 2 (==)
9 POP_JUMP_IF_FALSE 21
28 12 LOAD_GLOBAL 2 (True)
15 STORE_FAST 0 (bool1)
18 JUMP_FORWARD 0 (to 21)
>> 21 LOAD_CONST 0 (None)
24 RETURN_VALUE
test 2
31 0 LOAD_GLOBAL 0 (i)
3 LOAD_GLOBAL 1 (j)
6 BINARY_SUBTRACT
7 POP_JUMP_IF_TRUE 19
32 10 LOAD_GLOBAL 2 (True)
13 STORE_FAST 0 (bool2)
16 JUMP_FORWARD 0 (to 19)
>> 19 LOAD_CONST 0 (None)
22 RETURN_VALUE
False : Test 1 took: 0.156816959381
False : Test 2 took: 0.16281914711
所以不是那么激烈,但仍然略有不同。这次运行约12次,测试1仅运行一次。
所以还有一些神秘感!只是没那么激烈。
答案 0 :(得分:3)
循环中的所有代码基本相同,所以我删除了它们。相反,我将代码缩减为两个函数,并让我的好朋友dis.dis
向我展示他们在做什么:
l = [1,0,0,1,1]
def f1():
x = y = 0
if l[x] + l[y] == 1:
count += 1
def f2():
x = y = 0
if l[x]^l[y]:
count2 += 1
import dis
print "F1"
dis.dis(f1)
print "F2"
dis.dis(f2)
这是输出:
$ python2.7 test.py
F1
4 0 LOAD_CONST 1 (0)
3 DUP_TOP
4 STORE_FAST 0 (x)
7 STORE_FAST 1 (y)
5 10 LOAD_GLOBAL 0 (l)
13 LOAD_FAST 0 (x)
16 BINARY_SUBSCR
17 LOAD_GLOBAL 0 (l)
20 LOAD_FAST 1 (y)
23 BINARY_SUBSCR
24 BINARY_ADD ## Here.
25 LOAD_CONST 2 (1) ## Here.
28 COMPARE_OP 2 (==) ## Here.
31 POP_JUMP_IF_FALSE 47
6 34 LOAD_FAST 2 (count)
37 LOAD_CONST 2 (1)
40 INPLACE_ADD
41 STORE_FAST 2 (count)
44 JUMP_FORWARD 0 (to 47)
>> 47 LOAD_CONST 0 (None)
50 RETURN_VALUE
F2
9 0 LOAD_CONST 1 (0)
3 DUP_TOP
4 STORE_FAST 0 (x)
7 STORE_FAST 1 (y)
10 10 LOAD_GLOBAL 0 (l)
13 LOAD_FAST 0 (x)
16 BINARY_SUBSCR
17 LOAD_GLOBAL 0 (l)
20 LOAD_FAST 1 (y)
23 BINARY_SUBSCR
24 BINARY_XOR ## Here.
25 POP_JUMP_IF_FALSE 41
11 28 LOAD_FAST 2 (count2)
31 LOAD_CONST 2 (1)
34 INPLACE_ADD
35 STORE_FAST 2 (count2)
38 JUMP_FORWARD 0 (to 41)
>> 41 LOAD_CONST 0 (None)
44 RETURN_VALUE
区别是3个操作码与1个操作码。这些操作的设置是6个操作码。差异在噪音中消失了。