我正在通过修改我发现的一些例子来学习张量流。首先,我采用了一个RNN示例来反对" Spam"来自UCI的数据集。
我的代码和示例数据集可以在这里找到: https://trinket.io/python/c7d6b95452
当我运行代码时,我得到100%的错误率。我认为即使这个数据集不适合这个特定的模型,我至少得到了比这更好的东西,所以我不认为它是我选择的样本数据集。 下面是我的Python代码。如果有人可以建议如何修改这个以使模型正常工作,我将不胜感激!我也非常感谢任何一般的张量流建议。
# Example for my blog post at:
# https://danijar.com/introduction-to-recurrent-networks-in-tensorflow/
import functools
import os
import sets
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
def lazy_property(function):
attribute = '_' + function.__name__
@property
@functools.wraps(function)
def wrapper(self):
if not hasattr(self, attribute):
setattr(self, attribute, function(self))
return getattr(self, attribute)
return wrapper
class SequenceClassification:
def __init__(self, data, target, dropout, num_hidden=200, num_layers=3):
self.data = data
self.target = target
self.dropout = dropout
self._num_hidden = num_hidden
self._num_layers = num_layers
self.prediction
self.error
self.optimize
@lazy_property
def prediction(self):
# Recurrent network.
network = rnn_cell.GRUCell(self._num_hidden)
network = rnn_cell.DropoutWrapper(
network, output_keep_prob=self.dropout)
network = rnn_cell.MultiRNNCell([network] * self._num_layers)
output, _ = tf.nn.dynamic_rnn(network, self.data, dtype=tf.float32)
# Select last output.
output = tf.transpose(output, [1, 0, 2])
last = tf.gather(output, int(output.get_shape()[0]) - 1)
# Softmax layer.
weight, bias = self._weight_and_bias(
self._num_hidden, int(self.target.get_shape()[1]))
prediction = tf.nn.softmax(tf.matmul(last, weight) + bias)
return prediction
@lazy_property
def cost(self):
cross_entropy = -tf.reduce_sum(self.target *tf.log(self.prediction))
return cross_entropy
@lazy_property
def optimize(self):
learning_rate = 0.003
optimizer = tf.train.RMSPropOptimizer(learning_rate)
return optimizer.minimize(self.cost)
@lazy_property
def error(self):
mistakes = tf.not_equal(
tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
return tf.reduce_mean(tf.cast(mistakes, tf.float32))
@staticmethod
def _weight_and_bias(in_size, out_size):
weight = tf.truncated_normal([in_size, out_size], stddev=0.01)
bias = tf.constant(0.1, shape=[out_size])
return tf.Variable(weight), tf.Variable(bias)
def main():
sample_size=10
num_classes=2 #spam or ham
##
# import spam data
##
spam_data=[]
spam_data_train=[]
spam_data_test=[]
data_dir="."
data_file="spam.csv"
with open(os.path.join(data_dir, data_file), "r") as file_handle:
for row in file_handle:
spam_data.append(row)
spam_data=[line.rstrip().split(",") for line in spam_data if len(line) >=1]
random.shuffle(spam_data)
spam_data_train=spam_data[0:int(len(spam_data)*.8)]
spam_data_test=spam_data[int(len(spam_data)*.8):int(len(spam_data))]
def next_train_batch(batch_size):
a=random.sample(spam_data_train, batch_size)
return [np.array([line[:-1] for line in a]), np.array([line[len(line)-1] for line in a])]
def train_batch():
return [np.array([line[:-1] for line in spam_data_train]),np.array([line[len(line)-1] for line in spam_data_train])]
def next_test_batch(batch_size):
a=random.sample(spam_data_test, batch_size)
return [np.array([line[:-1] for line in a]), np.array([line[len(line)-1] for line in a])]
def test_batch():
return [np.array([line[:-1] for line in spam_data_test]),np.array([line[len(line)-1] for line in spam_data_test])]
t=train_batch();
train_input=t[0]
train_target=t[1]
test=test_batch()
test_input=t[0]
test_target=t[1]
training_data = tf.placeholder(tf.float32, [None, sample_size, len(train_input[0])], "training_data")
training_target = tf.placeholder(tf.float32, [None, sample_size], "training_target")
testing_data = tf.placeholder(tf.float32, [None, len(test_input), len(test_input[0])], "testing_data")
testing_target = tf.placeholder(tf.float32, [None, len(test_target)], "testing_target")
dropout = tf.placeholder(tf.float32)
training_model = SequenceClassification(training_data, training_target, dropout)
tf.get_variable_scope().reuse_variables()
testing_model = SequenceClassification(testing_data, testing_target, dropout)
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
for epoch in range(sample_size):
for _ in range(100):
sample=random.sample(range(0,len(train_input)-1),sample_size)
batch_train = [train_input[i] for i in sample]
batch_target = [train_target[i] for i in sample]
sess.run(training_model.optimize, {
training_data: [batch_train], training_target: [batch_target] , dropout: 0.5})
error = sess.run(testing_model.error, {
testing_data: [test_input], testing_target: [test_target], dropout: 1.0})
print('Epoch {:2d} error {:3.1f}%'.format(epoch + 1, 100 * error))
if __name__ == '__main__':
main()