我有一个名为'r2.csv'
的示例csv文件:
Factory | Product_Number | Date | Avg_Noshow | Walk_Cost | Room_Rev
-------------------------------------------------------------------------
A | 1 | 01APR2017 | 5.6 | 125 | 275
-------------------------------------------------------------------------
A | 1 | 02APR2017 | 4.5 | 200 | 300
-------------------------------------------------------------------------
A | 1 | 03APR2017 | 6.6 | 150 | 250
-------------------------------------------------------------------------
A | 1 | 04APR2017 | 7.5 | 175 | 325
-------------------------------------------------------------------------
我有以下python代码来读取csv文件并将列传输到数组:
# Read csv file
import csv
with open('r2.csv', 'r') as infile:
reader = csv.DictReader(infile)
data = {}
for row in reader:
for header, value in row.items():
try:
data[header].append(value)
except KeyError:
data[header] = [value]
# Transfer the column from list to arrays for later computation.
mu = data['Avg_Noshow']
cs = data['Walk_Cost']
co = data['Room_Rev']
mu = map(float,mu)
cs = map(float,cs)
co = map(float,co)
除最后一行外,它运行正常,并出现以下错误消息:
File "<stdin>", line 1, in <module>
KeyError: 'Room_Rev'
我怎么能避免它?
答案 0 :(得分:1)
我只处理了你的csv的前两行,但这给你提供了所需的输出:
with open('r2.csv', 'rb') as fin:
reader = csv.DictReader(fin)
data = {}
for row in reader:
for k, v in row.iteritems():
if k in data:
data[k] = [data[k],v]
else:
data[k] = v
然后返回:
{'Avg_Noshow': ['5.6', '4.5'],
'Date': ['1-Apr-17', '2-Apr-17'],
'Factory': ['A', 'A'],
'Product_Number': ['1', '1'],
'Room_Rev': ['275', '300'],
'Walk_Cost': ['125', '200']}
答案 1 :(得分:0)
我无法使用此代码的清理版本重现问题:
# Read csv file
import csv
with open('r2.csv', 'r') as infile:
reader = csv.DictReader(infile)
data = {}
for row in reader:
print('row: {}'.format(row))
for header, value in row.items():
try:
data[header].append(value)
except KeyError:
data[header] = [value]
print('')
from pprint import pprint
pprint(data)
# Transfer the column from list to arrays for later computation.
mu = data['Avg_Noshow']
cs = data['Walk_Cost']
co = data['Room_Rev']
mu = map(float, mu)
cs = map(float, cs)
co = map(float, co)
这是它产生的印刷输出:
row: {'Walk_Cost': '125', 'Factory': 'A', 'Avg_Noshow': '5.6', 'Product_Number': '1', 'Date': '01APR2017', 'Room_Rev': '275'}
row: {'Walk_Cost': '200', 'Factory': 'A', 'Avg_Noshow': '4.5', 'Product_Number': '1', 'Date': '02APR2017', 'Room_Rev': '300'}
row: {'Walk_Cost': '150', 'Factory': 'A', 'Avg_Noshow': '6.6', 'Product_Number': '1', 'Date': '03APR2017', 'Room_Rev': '250'}
row: {'Walk_Cost': '175', 'Factory': 'A', 'Avg_Noshow': '7.5', 'Product_Number': '1', 'Date': '04APR2017', 'Room_Rev': '325'}
{'Avg_Noshow': ['5.6', '4.5', '6.6', '7.5'],
'Date': ['01APR2017', '02APR2017', '03APR2017', '04APR2017'],
'Factory': ['A', 'A', 'A', 'A'],
'Product_Number': ['1', '1', '1', '1'],
'Room_Rev': ['275', '300', '250', '325'],
'Walk_Cost': ['125', '200', '150', '175']}
这是我自己创建并使用的r2.csv
测试,因为你没有提供一个:
Factory,Product_Number,Date,Avg_Noshow,Walk_Cost,Room_Rev
A,1,01APR2017,5.6,125,275
A,1,02APR2017,4.5,200,300
A,1,03APR2017,6.6,150,250
A,1,04APR2017,7.5,175,325