在以下数据中:
data01 =
contig start end haplotype_block
2 5207 5867 1856
2 155667 155670 2816
2 67910 68022 2
2 68464 68483 3
2 525 775 132
2 118938 119559 1157
data02 =
contig start last feature gene_id gene_name transcript_id
2 5262 5496 exon scaffold_200003.1 CP5 scaffold_200003.1
2 5579 5750 exon scaffold_200003.1 CP5 scaffold_200003.1
2 5856 6032 exon scaffold_200003.1 CP5 scaffold_200003.1
2 6115 6198 exon scaffold_200003.1 CP5 scaffold_200003.1
2 916 1201 exon scaffold_200001.1 NA scaffold_200001.1
2 614 789 exon scaffold_200001.1 NA scaffold_200001.1
2 171 435 exon scaffold_200001.1 NA scaffold_200001.1
2 2677 2806 exon scaffold_200002.1 NA scaffold_200002.1
2 2899 3125 exon scaffold_200002.1 NA scaffold_200002.1
问题:
gene_id
和gene_name
值传输到data01中的新列。我尝试过(使用熊猫):
data01['gene_id'] = ""
data01['gene_name'] = ""
data01['gene_id'] = data01['gene_id'].\
apply(lambda x: data02['gene_id']\
if range(data01['start'], data01['end'])\
<= range(data02['start'], data02['last']) else 'NA')
如何改进此代码?我目前正在坚持使用大熊猫,但如果使用字典更好地解决问题,我会对它开放。但是,请解释这个过程,我愿意学习,而不仅仅是得到答案。
谢谢,
期望的输出:
contig start end haplotype_block gene_id gene_name
2 5207 5867 1856 scaffold_200003.1,scaffold_200003.1,scaffold_200003.1 CP5,CP5,CP5
# the gene_id and gene_name are repeated 3 times because three intervals (i.e 5262-5496, 5579-5750, 5856-6032) from data02 overlap(or touch) the interval ranges from data01 (5207-5867)
# So, whenever there is overlap of the ranges between two dataframe, copy the gene_id and gene_name.
# and simply NA on gene_id and gene_name for non overlapping ranges
2 155667 155670 2816 NA NA
2 67910 68022 2 NA NA
2 68464 68483 3 NA NA
2 525 775 132 scaffold_200001.1 NA
2 118938 119559 1157 NA NA
答案 0 :(得分:4)
我意识到你正在使用python,但使用经典的生物信息学工具bedtools intersect
可以很容易地解决你的问题:http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html
您的两个输入文件都遵循标准的BED格式:http://bedtools.readthedocs.io/en/latest/content/general-usage.html
Bedtools intersect为您提供了如何确定两个区域之间的交叉点或重叠的构成的高级逻辑。我相信它也可以直接在bgzipped输入上运行。
答案 1 :(得分:1)
你应该在python中使用区间树函数它们非常高效且对内存友好,我尝试了类似的事情将它运行到一些问题,后来解决了但这是我写的代码, Using Interval tree to find overlapping regions
你可以建立这个代码。
答案 2 :(得分:1)
s1 = data01.start.values
e1 = data01.end.values
s2 = data02.start.values
e2 = data02['last'].values
overlap = (
(s1[:, None] <= s2) & (e1[:, None] >= s2)
) | (
(s1[:, None] <= e2) & (e1[:, None] >= e2)
)
g = data02.gene_id.values
n = data02.gene_name.values
i, j = np.where(overlap)
idx_map = {i_: data01.index[i_] for i_ in pd.unique(i)}
def make_series(m):
s = pd.Series(m[j]).fillna('').groupby(i).agg(','.join)
return s.rename_axis(idx_map).replace('', np.nan)
data01.assign(
gene_id=make_series(g),
gene_name=make_series(n),
)
答案 3 :(得分:0)
如果您想要比床具更快的东西和/或Python科学堆栈中的本地居民想要的东西,请尝试pyranges:
import pyranges as pr
c1 = """Chromosome Start End haplotype_block
2 5207 5867 1856
2 155667 155670 2816
2 67910 68022 2
2 68464 68483 3
2 525 775 132
2 118938 119559 1157"""
c2 = """Chromosome Start End feature gene_id gene_name transcript_id
2 5262 5496 exon scaffold_200003.1 CP5 scaffold_200003.1
2 5579 5750 exon scaffold_200003.1 CP5 scaffold_200003.1
2 5856 6032 exon scaffold_200003.1 CP5 scaffold_200003.1
2 6115 6198 exon scaffold_200003.1 CP5 scaffold_200003.1
2 916 1201 exon scaffold_200001.1 NA scaffold_200001.1
2 614 789 exon scaffold_200001.1 NA scaffold_200001.1
2 171 435 exon scaffold_200001.1 NA scaffold_200001.1
2 2677 2806 exon scaffold_200002.1 NA scaffold_200002.1
2 2899 3125 exon scaffold_200002.1 NA scaffold_200002.1"""
gr1, gr2 = pr.from_string(c1), pr.from_string(c2)
j = gr1.join(gr2).sort()
print(j)
# +--------------+-----------+-----------+-------------------+-----------+-----------+------------+-------------------+-------------+-------------------+
# | Chromosome | Start | End | haplotype_block | Start_b | End_b | feature | gene_id | gene_name | transcript_id |
# | (category) | (int32) | (int32) | (int64) | (int32) | (int32) | (object) | (object) | (object) | (object) |
# |--------------+-----------+-----------+-------------------+-----------+-----------+------------+-------------------+-------------+-------------------|
# | 2 | 525 | 775 | 132 | 614 | 789 | exon | scaffold_200001.1 | nan | scaffold_200001.1 |
# | 2 | 5207 | 5867 | 1856 | 5262 | 5496 | exon | scaffold_200003.1 | CP5 | scaffold_200003.1 |
# | 2 | 5207 | 5867 | 1856 | 5579 | 5750 | exon | scaffold_200003.1 | CP5 | scaffold_200003.1 |
# | 2 | 5207 | 5867 | 1856 | 5856 | 6032 | exon | scaffold_200003.1 | CP5 | scaffold_200003.1 |
# +--------------+-----------+-----------+-------------------+-----------+-----------+------------+-------------------+-------------+-------------------+
# Unstranded PyRanges object has 4 rows and 10 columns from 1 chromosomes.
# For printing, the PyRanges was sorted on Chromosome.
print(j.df)
# Chromosome Start End haplotype_block Start_b End_b feature gene_id gene_name transcript_id
# 0 2 525 775 132 614 789 exon scaffold_200001.1 NaN scaffold_200001.1
# 1 2 5207 5867 1856 5262 5496 exon scaffold_200003.1 CP5 scaffold_200003.1
# 2 2 5207 5867 1856 5579 5750 exon scaffold_200003.1 CP5 scaffold_200003.1
# 3 2 5207 5867 1856 5856 6032 exon scaffold_200003.1 CP5 scaffold_200003.1