我有一个模拟数据框的场景,如下所示。
Area Type NrPeople
1 House 200
1 Flat 100
2 House 300
2 Flat 400
3 House 1000
4 Flat 250
如何计算并按降序返回每个区域的人的Nr,但最重要的是我很难计算总体百分比。
结果应如下所示:
Area SumPeople %
3 1000 44%
2 700 31%
1 300 13%
4 250 11%
请参阅下面的代码示例:
HouseDf = spark.createDataFrame([("1", "House", "200"),
("1", "Flat", "100"),
("2", "House", "300"),
("2", "Flat", "400"),
("3", "House", "1000"),
("4", "Flat", "250")],
["Area", "Type", "NrPeople"])
import pyspark.sql.functions as fn
Total = HouseDf.agg(fn.sum('NrPeople').alias('Total'))
Top = HouseDf\
.groupBy('Area')\
.agg(fn.sum('NrPeople').alias('SumPeople'))\
.orderBy('SumPeople', ascending=False)\
.withColumn('%', fn.lit(HouseDf.agg(fn.sum('NrPeople'))/Total.Total))\
Top.show()
这失败了:/:'int'和'DataFrame'
的操作数类型不受支持任何想法都欢迎如何做到这一点!
答案 0 :(得分:4)
您需要窗口功能 -
import pyspark.sql.functions as fn
from pyspark.sql.functions import rank,sum,col
from pyspark.sql import Window
window = Window.rowsBetween(Window.unboundedPreceding,Window.unboundedFollowing)
HouseDf\
.groupBy('Area')\
.agg(fn.sum('NrPeople').alias('SumPeople'))\
.orderBy('SumPeople', ascending=False)\
.withColumn('total',sum(col('SumPeople')).over(window))\
.withColumn('Percent',col('SumPeople')*100/col('total'))\
.drop(col('total')).show()
输出:
+----+---------+------------------+
|Area|SumPeople| Percent|
+----+---------+------------------+
| 3| 1000.0| 44.44444444444444|
| 2| 700.0| 31.11111111111111|
| 1| 300.0|13.333333333333334|
| 4| 250.0| 11.11111111111111|
+----+---------+------------------+
答案 1 :(得分:3)
好吧,错误似乎很简单,Total
是一个data.frame,你不能用数据帧划分整数。首先,您可以使用collect
Total = HouseDf.agg(fn.sum('NrPeople').alias('Total')).collect()[0][0]
然后,通过一些额外的格式,以下应该可以正常工作
HouseDf\
.groupBy('Area')\
.agg(fn.sum('NrPeople').alias('SumPeople'))\
.orderBy('SumPeople', ascending = False)\
.withColumn('%', fn.format_string("%2.0f%%\n", col('SumPeople')/Total * 100))\
.show()
+----+---------+----+
|Area|SumPeople| %|
+----+---------+----+
| 3| 1000.0|44%
|
| 2| 700.0|31%
|
| 1| 300.0|13%
|
| 4| 250.0|11%
|
+----+---------+----+
虽然我不确定%
是否是一个非常好的列名,因为它会更难重用,但也可以考虑将其命名为Percent
等。
答案 2 :(得分:0)
您可以使用这种方法来避免执行collect
步骤:
HouseDf.registerTempTable("HouseDf")
df2 = HouseDf.groupby('Area').agg(f.sum(HouseDf.NrPeople).alias("SumPeople")).withColumn("%", f.expr('SumPeople/(select sum(NrPeople) from HouseDf)'))
df2.show()
我还没有测试过,但是我想这比本文中的其他答案要快
这与以下内容等效(物理计划非常相似):
HouseDf.registerTempTable("HouseDf")
sql = """
select g, sum(NrPeople) as sum, sum(NrPeople)/(select sum(NrPeople) from HouseDf) as new
from HouseDf
group by Area
"""
spark.sql(sql).explain(True)
spark.sql(sql).show()
几乎可以肯定,您不想在整个数据集的window
中使用该选项(例如w = Window.partitionBy()
)。实际上,Spark会就此警告您:
WARN WindowExec: No Partition Defined for Window operation! Moving all data to a single partition, this can cause serious performance degradation.