我有一个多维的numpy数组,其元素是True或False值:
import numpy as np
#just making a toy array grid to show what I want to do
grid = np.ones((4,4),dtype = 'bool')
grid[0,0]=False
grid[-1,-1]=False
#now grid has a few false values but is a 4x4 filled with mostly true values
现在我需要生成另一个数组M,其中每个站点M [i,j]的值取决于grid [i:i + 2,j:j + 2],如
M = np.empty((4x4)) #elements to be filled
#here is the part I want to clean up
for ii in range(4):
for jj in range(4):
#details here are unimportant. It's just that M[ii,jj] depends on
#multiple elements of grid in some way
if ii+2<=4 and jj+2<=4:
M[ii,jj] = np.all(grid[ii:ii+2,jj:jj+2]==True)
else:
M[ii,jj] = False
有没有办法用网格中的元素填充数组M而没有双循环?
答案 0 :(得分:3)
方法#1
这是2D
convolution -
from scipy.signal import convolve2d as conv2
out = (conv2(grid,np.ones((2,2),dtype=int),'valid')==4).astype(int)
示例运行 -
In [118]: grid
Out[118]:
array([[False, True, True, True],
[ True, True, True, True],
[ True, True, True, True],
[ True, True, True, False]], dtype=bool)
In [119]: (conv2(grid,np.ones((2,2),dtype=int),'valid')==4).astype(int)
Out[119]:
array([[0, 1, 1],
[1, 1, 1],
[1, 1, 0]])
请注意,预期输出的最后一行和最后一列将全部为零,并带有初始化的输出数组。这是因为代码的滑动特性,因为它不会在行和列中具有那么大的范围。
方法#2
这是另一个2D
统一过滤器 -
from scipy.ndimage.filters import uniform_filter as unif2d
out = unif2d(grid,size=2).astype(int)[1:,1:]
方法#3
这是另一个4D
slided windowed view -
from skimage.util import view_as_windows as viewW
out = viewW(grid,(2,2)).all(axis=(2,3)).astype(int)
使用all(axis=(2,3))
,我们只是检查每个窗口的维度,所有元素都是True
个元素。
运行时测试
In [122]: grid = np.random.rand(5000,5000)>0.1
In [123]: %timeit (conv2(grid,np.ones((2,2),dtype=int),'valid')==4).astype(int)
1 loops, best of 3: 520 ms per loop
In [124]: %timeit unif2d(grid,size=2).astype(int)[1:,1:]
1 loops, best of 3: 210 ms per loop
In [125]: %timeit viewW(grid,(2,2)).all(axis=(2,3)).astype(int)
1 loops, best of 3: 614 ms per loop