我正在使用numpy和matrices在Python 3.4中构建神经网络的草图,以学习简单的XOR。 我的记谱法如下:
a 是神经元的活动
z 是神经元的输入
W 是一个权重矩阵,大小为R ^ {前一层神经元的数量} x {下一层神经元的数量}
B 是偏差值的向量
在python中实现一个非常简单的网络之后,当只训练一个输入向量时,一切正常。然而,当对所有四个XOR训练样例进行训练时,误差函数显示出一种非常奇怪的行为(见图),并且网络的输出总是大约为0.5。 改变网络规模,学习速度或培训时期似乎没有帮助。
这是网络的代码:
import numpy as np
import time
import matplotlib.pyplot as plt
Js = []
start = time.time()
np.random.seed(2)
#Sigmoid
def activation(x, derivative = False):
if(derivative):
a = activation(x)
return a * (1 - a)
else:
return 1/(1+np.exp(-x))
def cost(output, target):
return (1/2) * np.sum((target - output)**2)
INPUTS = np.array([
[0, 1],
[1, 0],
[0, 0],
[1, 1],
])
TARGET = np.array([
[1],
[1],
[0],
[0],
])
"Hyper-Parameters"
# Layer Structure
LAYER = [2, 3, 1]
LEARNING_RATE = 0.1
ITERATIONS = int(1e3)
# Init Weights
W1 = np.random.rand(LAYER[0], LAYER[1])
W2 = np.random.rand(LAYER[1], LAYER[2])
# Init Biases
B1 = np.random.rand(LAYER[1], 1)
B2 = np.random.rand(LAYER[2], 1)
for i in range(0, ITERATIONS):
exampleIndex = i % len(INPUTS)
#exampleIndex = 2
"Forward Pass"
# Layer One Activity (Input layer)
A0 = np.transpose(INPUTS[exampleIndex:exampleIndex+1])
# Layer Two Activity (Hidden Layer)
Z1 = np.dot(np.transpose(W1), A0) + B1
A1 = activation(Z1)
# Layer Three Activity (Output Layer)
Z2 = np.dot(np.transpose(W2), A1) + B2
A2 = activation(Z2)
# Output
O = A2
# Cost J
# Target Vector T
T = np.transpose(TARGET[exampleIndex:exampleIndex+1])
J = cost(O, T)
Js.append(J)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
"Backward Pass"
# Calculate Delta of output layer
D2 = (O - T) * activation(Z2, True)
# Calculate Delta of hidden layer
D1 = np.dot(W2, D2) * activation(Z1, True)
# Calculate Derivatives w.r.t. W2
DerW2 = np.dot(A1, np.transpose(D2))
# Calculate Derivatives w.r.t. W1
DerW1 = np.dot(A0, np.transpose(D1))
# Calculate Derivatives w.r.t. B2
DerB2 = D2
# Calculate Derivatives w.r.t. B1
DerB1 = D1
"Update Weights and Biases"
W1 -= LEARNING_RATE * DerW1
B1 -= LEARNING_RATE * DerB1
W2 -= LEARNING_RATE * DerW2
B2 -= LEARNING_RATE * DerB2
# Show prediction
print("Time elapsed {}s".format(time.time() - start))
plt.plot(Js)
plt.ylabel("Cost J")
plt.xlabel("Iterations")
plt.show()
在我的实施中出现这种奇怪行为的原因是什么?
答案 0 :(得分:2)
我认为您的成本函数正在跳跃,因为您在每个样本后执行重量更新。但是,您的网络正在训练正确的行为:
479997
J = 4.7222501603409765e-05
I = [[1]
[0]], O = [[ 0.99028172]]
T = [[1]]
479998
J = 7.3205311398742e-05
I = [[0]
[0]], O = [[ 0.01210003]]
T = [[0]]
479999
J = 4.577485181547362e-05
I = [[1]
[1]], O = [[ 0.00956816]]
T = [[0]]
480000
J = 4.726257702199439e-05
I = [[0]
[1]], O = [[ 0.9902776]]
T = [[1]]
成本函数显示了一些有趣的行为:训练过程达到了成本函数中的跳跃变得非常小的程度。 您可以使用下面的代码重现这一点(我只做了一些细微的修改;请注意我训练了更多的时代):
import numpy as np
import time
import matplotlib.pyplot as plt
Js = []
start = time.time()
np.random.seed(2)
#Sigmoid
def activation(x, derivative = False):
if(derivative):
a = activation(x)
return a * (1 - a)
else:
return 1/(1+np.exp(-x))
def cost(output, target):
return (1/2) * np.sum((target - output)**2)
INPUTS = np.array([[0, 1],[1, 0],[0, 0],[1, 1]])
TARGET = np.array([[1],[1],[0],[0]])
"Hyper-Parameters"
# Layer Structure
LAYER = [2, 3, 1]
LEARNING_RATE = 0.1
ITERATIONS = int(5e5)
# Init Weights
W1 = np.random.rand(LAYER[0], LAYER[1])
W2 = np.random.rand(LAYER[1], LAYER[2])
# Init Biases
B1 = np.random.rand(LAYER[1], 1)
B2 = np.random.rand(LAYER[2], 1)
for i in range(0, ITERATIONS):
exampleIndex = i % len(INPUTS)
# exampleIndex = 2
"Forward Pass"
# Layer One Activity (Input layer)
A0 = np.transpose(INPUTS[exampleIndex:exampleIndex+1])
# Layer Two Activity (Hidden Layer)
Z1 = np.dot(np.transpose(W1), A0) + B1
A1 = activation(Z1)
# Layer Three Activity (Output Layer)
Z2 = np.dot(np.transpose(W2), A1) + B2
A2 = activation(Z2)
# Output
O = A2
# Cost J
# Target Vector T
T = np.transpose(TARGET[exampleIndex:exampleIndex+1])
J = cost(O, T)
Js.append(J)
# print("J = {}".format(J))
# print("I = {}, O = {}".format(A0, O))
# print("T = {}".format(T))
if ((i+3) % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
if ((i+2) % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
if ((i+1) % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
if (i % 20000 == 0):
print(i)
print("J = {}".format(J))
print("I = {}, O = {}".format(A0, O))
print("T = {}".format(T))
"Backward Pass"
# Calculate Delta of output layer
D2 = (O - T) * activation(Z2, True)
# Calculate Delta of hidden layer
D1 = np.dot(W2, D2) * activation(Z1, True)
# Calculate Derivatives w.r.t. W2
DerW2 = np.dot(A1, np.transpose(D2))
# Calculate Derivatives w.r.t. W1
DerW1 = np.dot(A0, np.transpose(D1))
# Calculate Derivatives w.r.t. B2
DerB2 = D2
# Calculate Derivatives w.r.t. B1
DerB1 = D1
"Update Weights and Biases"
W1 -= LEARNING_RATE * DerW1
B1 -= LEARNING_RATE * DerB1
W2 -= LEARNING_RATE * DerW2
B2 -= LEARNING_RATE * DerB2
# Show prediction
print("Time elapsed {}s".format(time.time() - start))
plt.plot(Js)
plt.ylabel("Cost J")
plt.xlabel("Iterations")
plt.savefig('cost.pdf')
plt.show()
为了减少成本函数的波动,通常在执行更新(某些平均更新)之前使用多个数据样本,但我发现在仅包含四个不同训练事件的集合中这很困难。 因此,总结这个相当长的答案:您的成本函数会跳跃,因为它是针对每个示例计算的,而不是针对多个示例的平均值。但是,网络输出非常符合XOR功能的分布,因此您无需更改它。