请耐心等待,因为我对此非常陌生,正在开设证书课程的课程。
我有通过从Pubmed和Embase数据库中检索文献计量记录而获得的.csv数据集。有1034行。有几列,但是,我试图从一列创建主题模型,Abstract列和一些记录没有摘要。我已经完成了一些处理(删除停用词,标点符号等),并且能够对出现超过200次的单词进行条形图处理以及按等级创建“常用术语”列表,还可以运行与所选单词的单词关联。所以,似乎r在抽象字段中看到了单词本身。当我尝试使用topicmodels包创建主题模型时,我的问题出现了。这是我正在使用的一些代码。
#including 1st 3 lines for reference
options(header = FALSE, stringsAsFactors = FALSE, FileEncoding =
"latin1")
records <- read.csv("Combined.csv")
AbstractCorpus <- Corpus(VectorSource(records$Abstract))
AbstractTDM <- TermDocumentMatrix(AbstractCorpus)
library(topicmodels)
library(lda)
lda <- LDA(AbstractTDM, k = 8)
(term <- terms(lda, 6))
term <- (apply(term, MARGIN = 2, paste, collapse = ","))
但是,我得到的主题输出如下。
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
[1,] "499" "733" "390" "833" "17" "413" "719" "392"
[2,] "484" "655" "808" "412" "550" "881" "721" "61"
[3,] "857" "299" "878" "909" "15" "258" "47" "164"
[4,] "491" "672" "313" "1028" "126" "55" "375" "987"
[5,] "734" "430" "405" "102" "13" "193" "83" "588"
[6,] "403" "52" "489" "10" "598" "52" "933" "980"
为什么我这里没有看到单词而不是数字?
此外,下面的代码,我基本上从主题模型的r PDF中获取,确实为我生成了值,但主题仍然是数字而不是单词,这对我来说毫无意义。
#using information from topicmodels paper
library(tm)
library(topicmodels)
library(lda)
AbstractTM <- list(VEM = LDA(AbstractTDM, k = 10, control = list(seed =
505)), VEM_fixed = LDA(AbstractTDM, k = 10, control = list(estimate.alpha
= FALSE, seed = 505)), Gibbs = LDA(AbstractTDM, k = 10, method = "Gibbs",
Control = list(seed = 505, burnin = 100, thin = 10, iter = 100)), CTM =
CTM(AbstractTDM, k = 10, control = list(seed = 505, var = list(tol =
10^-4), em = list(tol = 10^-3))))
#To compare the fitted models we first investigate the α values of the
models fitted with VEM and α estimated and with VEM and α fixed
sapply(AbstractTM[1:2], slot, "alpha")
#Find entropy
sapply(AbstractTM, function(x)mean(apply(posterior(x)$topics, 1,
function(z) - sum(z * log(z)))))
#Find estimated topics and terms
Topic <- topics(AbstractTM[["VEM"]], 1)
Topic
#find 5 most frequent terms for each topic
Terms <- terms(AbstractTM[["VEM"]], 5)
Terms[,1:5]
对问题可能是什么的任何想法?
答案 0 :(得分:4)
阅读topicmodels文档时,似乎LDA()
函数需要DocumentTermMatrix
,而不是TermDocumentMatrix
。尝试使用DocumentTermMatrix(AbstractCorpus)
创建前者并查看是否有效。