我是ES的新手,我一直在研究ES中的得分,试图提高搜索结果的质量。我遇到过这样一种情况:queryNorm
函数在分片上非常不同(大5倍)。我可以看到查询中术语对idf
的依赖性,这可能在分片中有所不同。但是,在我的情况下,我有一个搜索词+跨越分片的idf度量彼此接近(绝对不足以导致X 5倍的差异)。我将简要介绍一下我的设置,包括我的查询和解释端点的结果。
设置 我有一个~6500个文档的索引,分布在5个分片中。我提到在下面的查询中出现的字段没有索引时间提升。我提到我的设置使用ES 2.4和#34; query_then_fetch"。我的问题:
{
"query" : {
"bool" : {
"must" : [ {
"bool" : {
"must" : [ ],
"must_not" : [ ],
"should" : [ {
"multi_match" : {
"query" : "pds",
"fields" : [ "field1" ],
"lenient" : true,
"fuzziness" : "0"
}
}, {
"multi_match" : {
"query" : "pds",
"fields" : [ "field2" ],
"lenient" : true,
"fuzziness" : "0",
"boost" : 1000.0
}
}, {
"multi_match" : {
"query" : "pds",
"fields" : [ "field3" ],
"lenient" : true,
"fuzziness" : "0",
"boost" : 500.0
}
}, {
"multi_match" : {
"query" : "pds",
"fields" : [ "field4" ],
"lenient" : true,
"fuzziness" : "0",
"boost": 100.0
}
} ],
"must_not" : [ ],
"should" : [ ],
"filter" : [ ]
}
},
"size" : 1000,
"min_score" : 0.0
}
解释其中2个文档的输出(其中一个文档的查询范围是另一个文档的5倍):
{
"_shard" : 4,
"_explanation" : {
"value" : 2.046937,
"description" : "product of:",
"details" : [ {
"value" : 4.093874,
"description" : "sum of:",
"details" : [ {
"value" : 0.112607226,
"description" : "weight(field1:pds in 93) [PerFieldSimilarity], result of:",
"details" : [ {
"value" : 0.112607226,
"description" : "score(doc=93,freq=1.0), product of:",
"details" : [ {
"value" : 0.019996,
"description" : "queryWeight, product of:",
"details" : [ {
"value" : 2.0,
"description" : "boost",
"details" : [ ]
}, {
"value" : 5.6314874,
"description" : "idf(docFreq=11, maxDocs=1232)",
"details" : [ ]
}, {
"value" : 0.0017753748,
"description" : "queryNorm",
"details" : [ ]
} ]
}, {
"value" : 5.6314874,
"description" : "fieldWeight in 93, product of:",
"details" : [ {
"value" : 1.0,
"description" : "tf(freq=1.0), with freq of:",
"details" : [ {
"value" : 1.0,
"description" : "termFreq=1.0",
"details" : [ ]
} ]
}, {
"value" : 5.6314874,
"description" : "idf(docFreq=11, maxDocs=1232)",
"details" : [ ]
}, {
"value" : 1.0,
"description" : "fieldNorm(doc=93)",
"details" : [ ]
} ]
} ]
} ]
}, {
"value" : 3.9812667,
"description" : "weight(field4:pds in 93) [PerFieldSimilarity], result of:",
"details" : [ {
"value" : 3.9812667,
"description" : "score(doc=93,freq=2.0), product of:",
"details" : [ {
"value" : 0.9998001,
"description" : "queryWeight, product of:",
"details" : [ {
"value" : 100.0,
"description" : "boost",
"details" : [ ]
}, {
"value" : 5.6314874,
"description" : "idf(docFreq=11, maxDocs=1232)",
"details" : [ ]
}, {
"value" : 0.0017753748,
"description" : "queryNorm",
"details" : [ ]
} ]
}, {
"value" : 3.9820628,
"description" : "fieldWeight in 93, product of:",
"details" : [ {
"value" : 1.4142135,
"description" : "tf(freq=2.0), with freq of:",
"details" : [ {
"value" : 2.0,
"description" : "termFreq=2.0",
"details" : [ ]
} ]
}, {
"value" : 5.6314874,
"description" : "idf(docFreq=11, maxDocs=1232)",
"details" : [ ]
}, {
"value" : 0.5,
"description" : "fieldNorm(doc=93)",
"details" : [ ]
} ]
} ]
} ]
} ]
}, {
"value" : 0.5,
"description" : "coord(2/4)",
"details" : [ ]
} ]
}
},
{
"_shard" : 2,
"_explanation" : {
"value" : 0.4143453,
"description" : "product of:",
"details" : [ {
"value" : 0.8286906,
"description" : "sum of:",
"details" : [ {
"value" : 0.018336227,
"description" : "weight(field1:pds in 58) [PerFieldSimilarity], result of:",
"details" : [ {
"value" : 0.018336227,
"description" : "score(doc=58,freq=1.0), product of:",
"details" : [ {
"value" : 0.0030464241,
"description" : "queryWeight, product of:",
"details" : [ {
"value" : 2.0,
"description" : "boost",
"details" : [ ]
}, {
"value" : 6.0189342,
"description" : "idf(docFreq=11, maxDocs=1815)",
"details" : [ ]
}, {
"value" : 2.5307006E-4,
"description" : "queryNorm",
"details" : [ ]
} ]
}, {
"value" : 6.0189342,
"description" : "fieldWeight in 58, product of:",
"details" : [ {
"value" : 1.0,
"description" : "tf(freq=1.0), with freq of:",
"details" : [ {
"value" : 1.0,
"description" : "termFreq=1.0",
"details" : [ ]
} ]
}, {
"value" : 6.0189342,
"description" : "idf(docFreq=11, maxDocs=1815)",
"details" : [ ]
}, {
"value" : 1.0,
"description" : "fieldNorm(doc=58)",
"details" : [ ]
} ]
} ]
} ]
}, {
"value" : 0.81035435,
"description" : "weight(field4:pds in 58) [PerFieldSimilarity], result of:",
"details" : [ {
"value" : 0.81035435,
"description" : "score(doc=58,freq=2.0), product of:",
"details" : [ {
"value" : 0.1523212,
"description" : "queryWeight, product of:",
"details" : [ {
"value" : 100.0,
"description" : "boost",
"details" : [ ]
}, {
"value" : 6.0189342,
"description" : "idf(docFreq=11, maxDocs=1815)",
"details" : [ ]
}, {
"value" : 2.5307006E-4,
"description" : "queryNorm",
"details" : [ ]
} ]
}, {
"value" : 5.3200364,
"description" : "fieldWeight in 58, product of:",
"details" : [ {
"value" : 1.4142135,
"description" : "tf(freq=2.0), with freq of:",
"details" : [ {
"value" : 2.0,
"description" : "termFreq=2.0",
"details" : [ ]
} ]
}, {
"value" : 6.0189342,
"description" : "idf(docFreq=11, maxDocs=1815)",
"details" : [ ]
}, {
"value" : 0.625,
"description" : "fieldNorm(doc=58)",
"details" : [ ]
} ]
} ]
} ]
} ]
}, {
"value" : 0.5,
"description" : "coord(2/4)",
"details" : [ ]
} ]
}
}
请注意,分片4中文档的queryNorm
上的field1
是" 0.0017753748" (使用idf 5.6314874),而碎片2中doc的相同字段的queryNorm
是" 0.0002.5307006" (idf 6.0189342)。我尝试使用http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html上的公式手动跟踪queryNorm
的计算,但未能达到相同的答案。
我还没有看到关于计算queryNorm
的线索/帖子太多;我发现有用的是http://www.openjems.com/tag/querynorm/(这实际上是Solr,但由于查询是" query_then_fetch&#34 ;; Lucene计算应该是唯一重要的,所以我希望它们应该表现得相似)。但是,我无法使用相同的方法得出正确的queryNorm
值(据我所知,在我的情况下,t.getBoost()应该为1,因为没有索引时间字段提升+没有特殊在上面的查询中字段提升)。
有没有人对这里发生的事情有什么建议?
答案 0 :(得分:0)
您可以将search_type
设置为dfs_query_then_fetch
:
{
"search_type": "dfs_query_then_fetch",
"query": {
"bool": {
"must": [
{
"bool": {
"must": [],
"must_not": [],
"should": [
{
"multi_match": {
"query": "pds",
"fields": [
"field1"
],
"lenient": true,
"fuzziness": "0"
}
},
{
"multi_match": {
"query": "pds",
"fields": [
"field2"
],
"lenient": true,
"fuzziness": "0",
"boost": 1000.0
}
}
]
}
},
{
"multi_match": {
"query": "pds",
"fields": [
"field3"
],
"lenient": true,
"fuzziness": "0",
"boost": 500.0
}
},
{
"multi_match": {
"query": "pds",
"fields": [
"field4"
],
"lenient": true,
"fuzziness": "0",
"boost": 100.0
}
}
],
"must_not": [],
"should": [],
"filter": []
}
},
"size": 1000,
"min_score": 0.0
}
在这种情况下,所有标准值都是全局的。但它可能会影响查询性能。如果索引很小,您还可以使用单个分片创建索引。但是如果你有更多的文档,这些值应该是不同的。