为什么我的OpemMP代码性能比串行性能差?

时间:2017-04-16 21:38:15

标签: c linux multithreading gcc openmp

我正在进行简单的Pi计算,其中我并行化生成随机数的循环并且计数递增。串行(非OpenMP)代码比OpenMP代码执行得更好。以下是我采取的一些测量。这两个代码也在下面提供。

将序列号编译为:gcc pi.c -O3

将OpenMP代码编译为:gcc pi_omp.c -O3 -fopenmp

可能是什么问题?

# Iterations = 60000000

Serial Time = 0.893912

OpenMP 1 Threads Time = 0.876654
OpenMP 2 Threads Time = 23.8537
OpenMP 4 Threads Time = 7.72415

序列号:

/* Program to compute Pi using Monte Carlo methods */
/* from: http://www.dartmouth.edu/~rc/classes/soft_dev/C_simple_ex.html */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#define SEED 35791246

int main(int argc, char* argv)
{
  int niter=0;
  double x,y;
  int i;
  long count=0; /* # of points in the 1st quadrant of unit circle */
  double z;
  double pi;

  printf("Enter the number of iterations used to estimate pi: ");
  scanf("%d",&niter);

  /* initialize random numbers */
  srand(SEED);
  count=0;
  struct timeval start, end;
  gettimeofday(&start, NULL);
  for ( i=0; i<niter; i++) {
    x = (double)rand()/RAND_MAX;
    y = (double)rand()/RAND_MAX;
    z = x*x+y*y;
    if (z<=1) count++;
  }
  pi=(double)count/niter*4;

  gettimeofday(&end, NULL);
  double t2 = end.tv_sec + (end.tv_usec/1000000.0);
  double t1 = start.tv_sec + (start.tv_usec/1000000.0);

  printf("Time: %lg\n", t2 - t1);

  printf("# of trials= %d , estimate of pi is %lg \n",niter,pi);
  return 0;
}

OpenMP并行代码:

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#define SEED 35791246
/*
from: http://www.dartmouth.edu/~rc/classes/soft_dev/C_simple_ex.html
 */
#define CHUNKSIZE 500
int main(int argc, char *argv[]) {

  int chunk = CHUNKSIZE;
  int niter=0;
  double x,y;
  int i;
  long count=0; /* # of points in the 1st quadrant of unit circle */
  double z;
  double pi;

  int nthreads, tid;

  printf("Enter the number of iterations used to estimate pi: ");
  scanf("%d",&niter);

  /* initialize random numbers */
  srand(SEED);
  struct timeval start, end;

  gettimeofday(&start, NULL);
  #pragma omp parallel shared(chunk) private(tid,i,x,y,z) reduction(+:count)  
  {                                                                                                           
    /* Obtain and print thread id */
    tid = omp_get_thread_num();
    //printf("Hello World from thread = %d\n", tid);

    /* Only master thread does this */
    if (tid == 0)
    {
      nthreads = omp_get_num_threads();
      printf("Number of threads = %d\n", nthreads);
    }

    #pragma omp for schedule(dynamic,chunk)                                                                       
    for ( i=0; i<niter; i++) {                                                                              
      x = (double)rand()/RAND_MAX;                                                                          
      y = (double)rand()/RAND_MAX;                                                                          
      z = x*x+y*y;                                                                                          
      if (z<=1) count++;                                                                                    
    }                                                                                                       
  }                                                                                                           

  gettimeofday(&end, NULL);
  double t2 = end.tv_sec + (end.tv_usec/1000000.0);
  double t1 = start.tv_sec + (start.tv_usec/1000000.0);

  printf("Time: %lg\n", t2 - t1);

  pi=(double)count/niter*4;                                                                                   
  printf("# of trials= %d, threads used: %d, estimate of pi is %lg \n",niter,nthreads, pi);
  return 0;
}

2 个答案:

答案 0 :(得分:1)

在这种特殊情况下,有很多可能性,因为openMP需要10K - 100K周期才能启动循环,使用openMP进行性能改进并非易事。

在此之后我们还有另一个问题,即rand不是重入http://man7.org/linux/man-pages/man3/rand.3.html

所以最有可能的rand一次只能被一个线程调用,因此你的开放式MP版本基本上是单线程的,因为你的循环没什么其他的,每次调用rand时额外的争用开销 - 因此显着减速。

答案 1 :(得分:1)

rand()不可重入。它将无法正常工作,崩溃,或者只能一次从一个线程调用。像glibc这样的库通常会为传统的非重入函数序列化或使用TLS,而不是让它们在多线程代码中使用时随机崩溃。

尝试可重复使用的表单rand_r()

tid = omp_get_thread_num();
unsigned int seed = tid;
...
x = (double)rand_r(&seed)/RAND_MAX;

我认为你会发现它的速度要快得多。

注意我如何将种子设置为tid。您可能会想,为什么不将种子初始化为SEED?给定相同的种子,rand_r()将产生相同的数字序列。如果每个线程使用相同系列的伪随机数,那么它就会失去进行更多迭代的重点!您必须让每个线程使用不同的号码。