一位同事有一些数据由许多稀疏列组成,这些列应该折叠成几个填充列。例如:
d1 <- data.frame(X1 = c(rep("Northampton", times=3), rep(NA, times=7)),
X2 = c(rep(NA, times=3), rep("Amherst", times=5), rep(NA, times=2)),
X3 = c(rep(NA, times=8), rep("Hadley", times=2)),
X4 = c(rep("Stop and Shop", times=2), rep(NA, times=6), rep("Stop and Shop", times=2)),
X5 = c(rep(NA, times=2), rep("Whole Foods", times=6), rep(NA, times=2)))
d1
X1 X2 X3 X4 X5
1 Northampton <NA> <NA> Stop and Shop <NA>
2 Northampton <NA> <NA> Stop and Shop <NA>
3 Northampton <NA> <NA> <NA> Whole Foods
4 <NA> Amherst <NA> <NA> Whole Foods
5 <NA> Amherst <NA> <NA> Whole Foods
6 <NA> Amherst <NA> <NA> Whole Foods
7 <NA> Amherst <NA> <NA> Whole Foods
8 <NA> Amherst <NA> <NA> Whole Foods
9 <NA> <NA> Hadley Stop and Shop <NA>
10 <NA> <NA> Hadley Stop and Shop <NA>
X1:X3
应折叠到名为Town的一列中,并将X4:X5
折叠到一个名为Store的列中。这里必须有一个整齐的解决方案。我试过gather()
和unite()
,但没有找到任何优雅的东西。
答案 0 :(得分:5)
您可以使用coalesce
:
d1 %>% mutate_if(is.factor, as.character) %>% # coerce explicitly
transmute(town = coalesce(X1, X2, X3),
store = coalesce(X4, X5))
## town store
## 1 Northampton Stop and Shop
## 2 Northampton Stop and Shop
## 3 Northampton Whole Foods
## 4 Amherst Whole Foods
## 5 Amherst Whole Foods
## 6 Amherst Whole Foods
## 7 Amherst Whole Foods
## 8 Amherst Whole Foods
## 9 Hadley Stop and Shop
## 10 Hadley Stop and Shop
答案 1 :(得分:3)
我认为一系列gather()
来电和一些修剪会让你得到你想要的东西。一个问题是使用na.rm = TRUE
gather()
参数来剔除不需要的行。
d1 %>%
gather(key = "town", value = "town_name", X1:X3, na.rm = TRUE) %>%
gather(key = "store", value = "store_name", X4:X5, na.rm = TRUE) %>%
select(-town, -store)
这样做可以吗?
答案 2 :(得分:3)
您也可以在基数R中执行此操作,AirPlane(string a,double b, int x, double y) :
AirShip(x,y),engine(a),range(b)
{}
按行运行:
apply
结果:
d2 <- data.frame(X1 = apply(d1[,c("X1", "X2", "X3")], 1, function(x) x[!is.na(x)]),
X2 = apply(d1[,c("X4", "X5")], 1, function(x) x[!is.na(x)]),
stringsAsFactors = FALSE)
答案 3 :(得分:0)
以下是base R
使用pmax/pmin
data.frame(lapply(list(Town = d1[1:3], Store = d1[4:5]), function(x)
do.call(pmax, c(x, na.rm = TRUE))), stringsAsFactors=FALSE)
# Town Store
#1 Northampton Stop and Shop
#2 Northampton Stop and Shop
#3 Northampton Whole Foods
#4 Amherst Whole Foods
#5 Amherst Whole Foods
#6 Amherst Whole Foods
#7 Amherst Whole Foods
#8 Amherst Whole Foods
#9 Hadley Stop and Shop
#10 Hadley Stop and Shop
d1 <- data.frame(X1 = c(rep("Northampton", times=3),rep(NA, times=7)),
X2 = c(rep(NA, times=3), rep("Amherst", times=5), rep(NA, times=2)),
X3 = c(rep(NA, times=8), rep("Hadley", times=2)),
X4 = c(rep("Stop and Shop", times=2), rep(NA, times=6), rep("Stop and Shop", times=2)),
X5 = c(rep(NA, times=2), rep("Whole Foods", times=6),
rep(NA, times=2)), stringsAsFactors=FALSE)