我对4个时间点的个体进行了纵向重复测量。在使用时间作为固定效应和随机斜率的混合模型分析之后,我使用lsmeans来估计每个时间点的平均值以及95%置信区间。我现在想绘制一个带有时间点(x)的线图和我的结果变量(y)与CI的平均值。我可以使用例如ggplot绘制我从lsmeans得到的结果?还是有另一种聪明的方式来绘制这个吗?
我从lsmeans得到的结果,以及我想绘制(lsmean,lower.CL,upperCL随时间变化)的结果是:
$lsmeans
time lsmean SE df lower.CL upper.CL
0 21.967213 0.5374422 60 20.892169 23.04226
1 16.069586 0.8392904 60 14.390755 17.74842
2 13.486802 0.8335159 60 11.819522 15.15408
3 9.495137 0.9854642 60 7.523915 11.46636
Confidence level used: 0.95
答案 0 :(得分:2)
这是你的意思吗?
# To convert from lsmeans output (d <- lsmeans(paramaters))
d <- summary(d)$lsmeans[c("lsmean", "lower.CL", "upper.CL")]
library(ggplot2)
ggplot(d, aes(time)) +
geom_line(aes(y = lsmean)) +
geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL),
width = 0.2) +
geom_point(aes(y = lsmean), size = 3,
shape = 21, fill = "white") +
labs(x = "Time", y = "ls mean",
title = "ls mean result over time") +
theme_bw()
答案 1 :(得分:0)
总而言之,将为您提供混合模型的估计和绘图的整个代码是:
## random slope model
summary(model <- lme(outcome ~ time, random = ~1+time|ID, data = data,
na.action = na.exclude, method = "ML"))
## pairwise comparisons of timepoints
install.packages("lsmeans")
library(lsmeans)
lsmeans(model, pairwise~time, adjust="tukey")
### Draw the picture
d <- summary(lsmeans(model, ~time))
library(ggplot2)
ggplot(d, aes(time)) +
geom_line(aes(y = lsmean, group = 1)) +
geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL), width = 0.2) +
geom_point(aes(y = lsmean), size = 3, shape = 21, fill = "white") +
labs(x = "Time", y = "ls mean", title = "ls mean result over time") +
theme_bw()