计数数字os BST

时间:2017-04-13 08:09:35

标签: algorithm binary-search-tree

有人可以解释一下我们在这里实际计算可能的BST的方式。我理解基本部分,我们依赖实际的左树和右子树计数来获得总计数。我很难理解循环。

public static int countTrees(int numKeys){
    if(numKeys<=1){
        return(1);
    }
    else{
        // there will be one value at the root, with whatever remains
        // on the left and right each forming their own subtrees.
        // Iterate through all the values that could be the root...
        int sum=0;
        int left,right,root;
        for(root=1;root<=numKeys;root++){
            left=countTrees(root-1);
            right=countTrees(numKeys-root);
            // number of possible trees with this root == left*right
            sum+=left*right;
        }
        return(sum);
    }
}

1 个答案:

答案 0 :(得分:2)

显然,这与二进制搜索树无关,一般与二叉树无关。该实现使用归纳参数来计算具有n个节点的可能二叉树的数量。

第一种情况是基本情况,其中一个onr没有节点可能只能安排在一棵树中。

第二种情况通过假设在n个节点之外,每个节点可以是根节点来计算节点数,这意味着剩余的n-1节点将被分配到左侧和右子树,其中递归评估所有可能的分布组合;请注意,显然节点是有区别的,这意味着同构树被多次计数。

在递归评估左右子树的可能实现之后,将得到的可能性相乘以获得整个树的可能实现的总数。

例如,假设您要评估3个节点的树数,对应于节点集{1,2,3}。该数字大于1 并且每个节点都可以是根节点,从而导致循环执行3次迭代,如下所示。

1 is the root, 2 remaining nodes to distribute.
2 is the root, 2 remaining nodes to distribute.
3 is the root, 2 remaining nodes to distribute.

2节点的评估将是相同的,因此我们仅为第一次调用扩展呼叫。对于2个节点,对应于节点集{1,2}。该数字大于1,导致循环进行2次迭代,如下所示。

1 is the root, 1 remaining node to distribute.
2 is the root, 1 remaining node to distribute.

1节点的评估将是相同的,即确实存在1个可能性。

1 is the root, 1 remaining node to distribute;
the 1 node can be in either the left or the right subtree,
resulting in 1 possiblity each, which is 2 possibilities in total.

这意味着调用2个节点的结果将为2

回到上面的评估,我们获得以下内容。

1 is the root, 2 remaining nodes to distribute;
   possibilites:
   2 in the left subtree, 0 in the right subtree;
       results in 4*1 = 4 possibilities.
   1 in the left subtree, 1 in the right subtree;
       results in 1*1 = 1 possibilities.
   0 in the left subtree, 2 in the right subtree;
       results in 1*4 = 4 possibilities.

总结这些可能性,一旦选择了根,就有4 + 1 + 4 = 9种可能性来安排具有3个节点的树;但总的来说,有3个方法可以选择根,这会给出总结果。

1 is the root, 2 remaining nodes to distribute;
    results in 9 possibilites.
2 is the root, 2 remaining nodes to distribute;
    results in 9 possibilites.
3 is the root, 2 remaining nodes to distribute;
    results in 9 possibilites.

如果总结一下,这可能是9+9+9=27个可能的树。