我正在pyspark中处理数据帧。我有数据帧df和列col_1,它是数组类型,也包含数字。
是否有内置函数来删除此字符串中的数字?
Dataframe架构:
>>> df.printSchema()
root
|-- col_1: array (nullable = true)
| |-- element: string (containsNull = true)
列中的示例值:
>>>df.select("col_1").show(2,truncate=False)
+-------------------------------------------------------------------------------+
|col_1
+-------------------------------------------------------------------------------+
|[use, bal, trans, ck, pay, billor, trans, cc, balances, got, grat, thnxs] |
|[hello, like, farther, lower, apr, 11, 49, thank]|
+-------------------------------------------------------------------------------+
在这种情况下,我正在寻找能够从第二行剥离第11,49号的功能。谢谢。
答案 0 :(得分:2)
这是你可以尝试的东西 -
# Data preparation =>
data = [[['use', 'bal', 'trans', 'ck', 'pay', 'billor', 'trans', 'cc', 'balances', 'got', 'grat', 'thnxs']],
[['hello', 'like', 'farther', 'lower', 'apr', '11', '49', 'thank']]]
df = sc.parallelize(data).toDF(["arr"])
df.printSchema()
root
|-- arr: array (nullable = true)
| |-- element: string (containsNull = true)
from pyspark.sql.functions import explode,regexp_extract,col
df.select(explode(df.arr).alias('elements'))\
.select(regexp_extract('elements','\d+',0)\
.alias('Numbers'))\
.filter(col('Numbers') != '').show()
输出:
+-------+
|Numbers|
+-------+
| 11|
| 49|
+-------+