symb dates
4 BLK 01/03/2014 09:00:00
0 BBR 02/06/2014 09:00:00
21 HZ 02/06/2014 09:00:00
24 OMNI 02/07/2014 09:00:00
31 NOTE 03/04/2014 09:00:00
65 AMP 03/04/2016 09:00:00
40 RBY 04/07/2014 09:00:00
以下是(df.sort('date')
)输出的示例。
正如您所看到的,它使用了几个月的日子,反之亦然。知道如何解决这个问题吗?
答案 0 :(得分:2)
您可以使用pandas.to_datetime并使用format参数然后对其进行排序。
>> df['date'] = pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S')
>> df.sort('date')
date symb
0 2014-01-03 09:00:00 BLK
1 2014-02-06 09:00:00 BBR
2 2014-02-06 09:00:00 HZ
3 2014-02-07 09:00:00 OMNI
4 2014-03-04 09:00:00 NOTE
6 2014-04-07 09:00:00 RBY
5 2016-03-04 09:00:00 AMP
答案 1 :(得分:0)
我不确定您是如何获取数据的,但如果您从某些来源(例如CSV)导入数据,则可以使用pandas.read_csv并设置parse_dates=True
。问题是日期列的类型是什么?您可以使用`dateutil.parse.parse轻松地将它们更改为类似日期的对象。例如,
import pandas
import dateutil
data = {'symb': ['BLK', 'BBR', 'HZ', 'OMNI', 'NOTE', 'AMP', 'RBY'],
'dates': ['01/03/2014 09:00:00', '02/06/2014 09:00:00', '02/06/2014 09:00:00',
'02/07/2014 09:00:00', '03/04/2014 09:00:00', '03/04/2016 09:00:00',
'04/07/2014 09:00:00']}
df = pandas.DataFrame.from_dict(data)
df.dates = df.dates.apply(dateutil.parser.parse)
print df.to_string()
# OUTPUT
# 0 2014-01-03 09:00:00 BLK
# 1 2014-02-06 09:00:00 BBR
# 2 2014-02-06 09:00:00 HZ
# 3 2014-02-07 09:00:00 OMNI
# 4 2014-03-04 09:00:00 NOTE
# 5 2016-03-04 09:00:00 AMP
# 6 2014-04-07 09:00:00 RBY
这可以获得[ISO8601格式],它可能比dd/mm/yyyy
格式更可取,但是如果你必须有这种格式,你可以使用@umutto推荐的代码
答案 2 :(得分:0)
您可以使用to_datetime
来排序sort_values
:
#format mm/dd/YYYY
df['dates'] = pd.to_datetime(df['dates'])
print (df.sort_values('dates'))
symb dates
4 BLK 2014-01-03 09:00:00
0 BBR 2014-02-06 09:00:00
21 HZ 2014-02-06 09:00:00
24 OMNI 2014-02-07 09:00:00
31 NOTE 2014-03-04 09:00:00
40 RBY 2014-04-07 09:00:00
65 AMP 2016-03-04 09:00:00
#format dd/mm/YYYY
df['dates'] = pd.to_datetime(df['dates'], dayfirst=True)
print (df.sort_values('dates'))
symb dates
4 BLK 2014-03-01 09:00:00
31 NOTE 2014-04-03 09:00:00
0 BBR 2014-06-02 09:00:00
21 HZ 2014-06-02 09:00:00
24 OMNI 2014-07-02 09:00:00
40 RBY 2014-07-04 09:00:00
65 AMP 2016-04-03 09:00:00
另一个解决方案是在read_csv
中使用参数parse_dates
,如果格式dd/mm/YYYY
添加dayfirst=True
:
import pandas as pd
import numpy as np
from pandas.compat import StringIO
temp=u"""symb,dates
BLK,01/03/2014 09:00:00
BBR,02/06/2014 09:00:00
HZ,02/06/2014 09:00:00
OMNI,02/07/2014 09:00:00
NOTE,03/04/2014 09:00:00
AMP,03/04/2016 09:00:00
RBY,04/07/2014 09:00:00"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), parse_dates=['dates'])
print (df)
symb dates
0 BLK 2014-01-03 09:00:00
1 BBR 2014-02-06 09:00:00
2 HZ 2014-02-06 09:00:00
3 OMNI 2014-02-07 09:00:00
4 NOTE 2014-03-04 09:00:00
5 AMP 2016-03-04 09:00:00
6 RBY 2014-04-07 09:00:00
print (df.dtypes)
symb object
dates datetime64[ns]
dtype: object
print (df.sort_values('dates'))
symb dates
0 BLK 2014-01-03 09:00:00
1 BBR 2014-02-06 09:00:00
2 HZ 2014-02-06 09:00:00
3 OMNI 2014-02-07 09:00:00
4 NOTE 2014-03-04 09:00:00
6 RBY 2014-04-07 09:00:00
5 AMP 2016-03-04 09:00:00
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), parse_dates=['dates'], dayfirst=True)
print (df)
symb dates
0 BLK 2014-03-01 09:00:00
1 BBR 2014-06-02 09:00:00
2 HZ 2014-06-02 09:00:00
3 OMNI 2014-07-02 09:00:00
4 NOTE 2014-04-03 09:00:00
5 AMP 2016-04-03 09:00:00
6 RBY 2014-07-04 09:00:00
print (df.dtypes)
symb object
dates datetime64[ns]
dtype: object
print (df.sort_values('dates'))
symb dates
0 BLK 2014-03-01 09:00:00
4 NOTE 2014-04-03 09:00:00
1 BBR 2014-06-02 09:00:00
2 HZ 2014-06-02 09:00:00
3 OMNI 2014-07-02 09:00:00
6 RBY 2014-07-04 09:00:00
5 AMP 2016-04-03 09:00:00