我有一个简单的R脚本,用于在一个小数据帧上运行FactoMineR's PCA,以便找到为每个变量解释的累积差异百分比:
library(FactoMineR)
a <- c(1, 2, 3, 4, 5)
b <- c(4, 2, 9, 23, 3)
c <- c(9, 8, 7, 6, 6)
d <- c(45, 36, 74, 35, 29)
df <- data.frame(a, b, c, d)
df_pca <- PCA(df, ncp = 4, graph=F)
print(df_pca$eig$`cumulative percentage of variance`)
返回:
> print(df_pca$eig$`cumulative percentage of variance`)
[1] 58.55305 84.44577 99.86661 100.00000
我尝试使用scikit-learn's decomposition package在Python中执行相同的操作,如下所示:
import pandas as pd
from sklearn import decomposition, linear_model
a = [1, 2, 3, 4, 5]
b = [4, 2, 9, 23, 3]
c = [9, 8, 7, 6, 6]
d = [45, 36, 74, 35, 29]
df = pd.DataFrame({'a': a,
'b': b,
'c': c,
'd': d})
pca = decomposition.PCA(n_components = 4)
pca.fit(df)
transformed_pca = pca.transform(df)
# sum cumulative variance from each var
cum_explained_var = []
for i in range(0, len(pca.explained_variance_ratio_)):
if i == 0:
cum_explained_var.append(pca.explained_variance_ratio_[i])
else:
cum_explained_var.append(pca.explained_variance_ratio_[i] +
cum_explained_var[i-1])
print(cum_explained_var)
但结果是:
[0.79987089715487936, 0.99224337624509307, 0.99997254568237226, 1.0]
正如您所看到的,两者都正确地加起来达到100%,但似乎每个变量的贡献在R和Python版本之间有所不同。有谁知道这些差异来自何处或如何在Python中正确复制R结果?
编辑:感谢Vlo,我现在知道差异源于FactoMineR PCA功能默认情况下缩放数据。通过使用sklearn预处理包(pca_data = preprocessing.scale(df))在运行PCA之前扩展我的数据,我的结果与匹配答案 0 :(得分:1)
感谢Vlo,我了解到FactoMineR PCA功能和sklearn PCA功能之间的区别在于FactoMineR默认会缩放数据。只需在我的python代码中添加缩放功能,我就可以重现结果。
import pandas as pd
from sklearn import decomposition, preprocessing
a = [1, 2, 3, 4, 5]
b = [4, 2, 9, 23, 3]
c = [9, 8, 7, 6, 6]
d = [45, 36, 74, 35, 29]
e = [35, 84, 3, 54, 68]
df = pd.DataFrame({'a': a,
'b': b,
'c': c,
'd': d})
pca_data = preprocessing.scale(df)
pca = decomposition.PCA(n_components = 4)
pca.fit(pca_data)
transformed_pca = pca.transform(pca_data)
cum_explained_var = []
for i in range(0, len(pca.explained_variance_ratio_)):
if i == 0:
cum_explained_var.append(pca.explained_variance_ratio_[i])
else:
cum_explained_var.append(pca.explained_variance_ratio_[i] +
cum_explained_var[i-1])
print(cum_explained_var)
输出:
[0.58553054049052267, 0.8444577483783724, 0.9986661265687754, 0.99999999999999978]