MapReduce:java.lang.ClassCastException:java.lang.Class.asSubclass中的类nyc311.NYC311_Writable(Class.java:3404)

时间:2017-04-11 19:05:42

标签: java hadoop mapreduce

这是我的基本MapReduce程序: 我试图创建一个可写对象来保存数据,即NYC311_Writable类,并收到java.lang.ClassCastException: 有什么建议吗?

这是错误:

17/04/11 14:54:05 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
17/04/11 14:54:05 WARN mapred.MapTask: Unable to initialize MapOutputCollector org.apache.hadoop.mapred.MapTask$MapOutputBuffer
java.lang.ClassCastException: class nyc311.NYC311_Writable
    at java.lang.Class.asSubclass(Class.java:3404)
    at org.apache.hadoop.mapred.JobConf.getOutputKeyComparator(JobConf.java:887)
    at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.init(MapTask.java:1004)
    at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:402)
    at org.apache.hadoop.mapred.MapTask.access$100(MapTask.java:81)
    at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:698)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:770)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
    at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:243)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

主类:

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package nyc311;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 *
 * @author dhaval
 */
public class NYC311 {

    /**
     * @param args the command line arguments
     * @throws java.io.IOException
     * @throws java.lang.InterruptedException
     * @throws java.lang.ClassNotFoundException
     */
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration(); 
        Job job = Job.getInstance(conf, "NYC311");
        job.setJarByClass(NYC311.class);

        job.setMapperClass(NYC311_Mapper.class);
        job.setMapOutputKeyClass(NYC311_Writable.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setReducerClass(NYC311_Reducer.class);
        job.setOutputKeyClass(NYC311_Writable.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true)? 0: 1);
       }

}

可写对象类:

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package nyc311;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableUtils;

/**
 *
 * @author dhaval
 */
public class NYC311_Writable implements Writable{

    private String Incident_Zip;


    public NYC311_Writable() {
    }

    public NYC311_Writable(String Incident_Zip) {
        this.Incident_Zip = Incident_Zip;
    }

    public String getIncident_Zip() {
        return Incident_Zip;
    }

    public void setIncident_Zip(String Incident_Zip) {
        this.Incident_Zip = Incident_Zip;
    }


    @Override
    public void write(DataOutput d) throws IOException {
        WritableUtils.writeString(d,Incident_Zip);
    }

    @Override
    public void readFields(DataInput di) throws IOException {
        Incident_Zip = WritableUtils.readString(di);

    }

    public static NYC311_Writable read(DataInput in) throws IOException {
         NYC311_Writable w = new NYC311_Writable();
         w.readFields(in);
         return w;
       }

}

映射器:

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package nyc311;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 *
 * @author dhaval
 */
public class NYC311_Mapper extends Mapper<Object, Text, NYC311_Writable, IntWritable>{

       private IntWritable count = new IntWritable(1);
       private Text zip = new Text();

    @Override
    protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {

        String[] line = value.toString().split(",");    

        if (line[8].matches(".*[a-z].*")) { 

        }
        else{        

            NYC311_Writable nyc_data = new NYC311_Writable();

            nyc_data.setIncident_Zip(line[8]);
            context.write(nyc_data, count);       

        }

    }

}

减速机:

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package nyc311;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 *
 * @author dhaval
 */
public class NYC311_Reducer extends Reducer<NYC311_Writable, IntWritable, NYC311_Writable, IntWritable>{

    private IntWritable count = new IntWritable();

    @Override
    protected void reduce(NYC311_Writable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

    int sum = 0;

    for (IntWritable val : values) {
        sum += val.get();
    }

    count.set(sum);
    context.write(key, count);

    }

}

1 个答案:

答案 0 :(得分:0)

我认为您错过了Comparable,这是指导您的博客hadooptutorial.info/creating-custom-hadoop-writable-data-typ‌​e