我试图找到每个变量的唯一值,但我不知道为什么它在应用强制转换函数后会出错。
<div *ngFor="let user of userlist">
<p>{{user.username}} - {{user.group[0]?.id}} -{{user.groups[0]?.url}}<p>
</div>
错误(函数(...,row.names = NULL,check.rows = FALSE,check.names = TRUE,:
) 参数意味着不同的行数:9,0
以下是我使用的数据。
library(reshape)
> odata <- read.csv("dummy2.csv")
> msdata <- melt(odata, id=c("A","F"))
> subjmeans <- cast(msdata, A~ variable, mean)
结果相同,错误也与IRIS数据相同。
Timestamp A B C D E F G H I J
2586 01_Antwerpen_S1.jpg 9 250 1151 458 p1 color 261.8472837 13.27605282 50.20731621
2836 01_Antwerpen_S1.jpg 10 150 1371 316 p1 color 41.01219331 2.088502575 25.59470566
2986 01_Antwerpen_S1.jpg 11 283 1342 287 p1 color 580.2206477 28.92031693 84.62469724
3269 01_Antwerpen_S1.jpg 12 433 762 303 p1 color 138.1303732 7.026104125 36.45742907
3702 01_Antwerpen_S1.jpg 13 183 624 297 p1 color 88.20430828 4.489909458 30.87780081
3885 01_Antwerpen_S1.jpg 14 333 712 303 p1 color 42.20189569 2.149072905 25.72796039
4218 01_Antwerpen_S1.jpg 15 300 753 293 p1 color 51.7880295 2.637077062 26.80156954
6517 01_Antwerpen_S1.jpg 22 333 601 674 p1 color 466.0525721 23.40488212 72.49074066
9066 02_Berlin_S1.jpg 27 149 1067 681 p1 color 90.42676595 4.602920212 31.12642447
9215 02_Berlin_S1.jpg 28 266 1116 757 p1 color 101.8430165 5.18328435 32.40322557
9481 02_Berlin_S1.jpg 29 217 1020 723 p1 color 314.3962468 15.90906187 55.99993612
9698 02_Berlin_S1.jpg 30 183 711 781 p1 color 272.045952 13.78825606 51.33416332
9881 02_Berlin_S1.jpg 31 183 439 776 p1 color 249.9939999 12.68008164 48.8961796
10064 02_Berlin_S1.jpg 32 167 328 552 p1 color 193.8375609 9.847751174 42.66505258
10231 02_Berlin_S1.jpg 33 400 310 359 p1 color 68.00735254 3.462531847 28.61757006
10631 02_Berlin_S1.jpg 34 666 246 336 p1 color 93.40770846 4.754485399 31.45986788
11297 02_Berlin_S1.jpg 35 333 172 279 p1 color 1105.224412 52.32154317 136.107395
13679 03_Bordeaux_S1.jpg 40 316 1152 790 p1 color 280.8629559 14.23062355 52.30737182
13995 03_Bordeaux_S1.jpg 41 583 1424 860 p1 color 134.1827113 6.825784964 36.01672692
14578 03_Bordeaux_S1.jpg 42 283 1486 979 p1 color 133.9589489 6.814429158 35.99174415
14861 03_Bordeaux_S1.jpg 43 233 1419 863 p1 color 282.1772493 14.29652823 52.4523621
15094 03_Bordeaux_S1.jpg 44 266 1149 781 p1 color 998.5128943 47.86171758 126.2957787
17559 04_Köln_S1.jpg 49 200 151 813 p1 color 590.041524 29.38880547 85.65537204
17759 04_Köln_S1.jpg 50 183 741 806 p1 color 294.9779653 14.93791111 53.86340444
17943 04_Köln_S1.jpg 51 216 1035 782 p1 color 81.0246876 4.124771083 30.07449638
18159 04_Köln_S1.jpg 52 117 1068 708 p1 color 85.80209788 4.367748556 30.60904682
错误(函数(...,row.names = NULL,check.rows = FALSE,check.names = TRUE,: 参数意味着不同的行数:9,0