使用OpenMP进行n-ary搜索没有加速

时间:2017-04-11 09:46:13

标签: c search parallel-processing openmp

我正在为n-ary搜索编写代码,即将搜索空间分成n部分。 将并行代码与没有OpenMP指令的代码(即串行执行)进行比较时,我发现并行代码比串行代码慢很多倍。在多次执行这两个程序之后,我看到并行代码的速度很快,但并非每次都有。这可能是由于缓存层次结构。我正在使用4GB RAM的四核处理器上运行程序。

根据对No speedup with OpenMP的回答,内存绑定性能和负载均衡不适用于小问题,例如数组SIZE 100。我没有使用任何同步。我也尝试将数组大小增加到10000000,但并行代码的输出并不总是更快。很多时候,串行代码胜过并行代码。

根据http://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html工作共享结构末尾的隐式障碍可以使用nowait子句取消。我尝试添加nowait子句,我也尝试了调度(动态)和调度(自动)引用https://software.intel.com/en-us/articles/openmp-loop-scheduling,但仍然存在同样的问题。

代码:

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

#define SIZE 100
#define NUM_THREADS 4

int* a;
int num;


void nary(int num)
{
    int found = 0, low = 0, high = SIZE, step;
    int i = 0;
    while(!found && low <= high)
    {
        step = (high-low)/NUM_THREADS;
        printf("Low :- %d\tHigh :- %d\tStep :- %d\n", low,high,step);
        printf("\n");

        #pragma omp parallel for num_threads(NUM_THREADS) shared(low,high,step)
        for (i = 0; i < NUM_THREADS; ++i)
        {
            printf("First element :- %d by thread :- %d\n", a[low+step*i],omp_get_thread_num());
            if (a[low+step*i] == num)
            {
                found = 1;
            }
        }

        printf("\n");
        /* First block */
        if (a[low+step] > num)
        {
            high = low + step - 1;
            printf("First \nLow :- %d \nHigh :- %d\n\n",low,high);
        }

        /* Last block */
        else if (a[low+step*(NUM_THREADS-1)] < num)
        {
            low = low + step * (NUM_THREADS-1) + 1;
            printf("Last\nLow :- %d \nHigh :- %d\n\n",low,high);
        }
        /* Middle blocks */
         else{
            #pragma omp parallel for num_threads(NUM_THREADS) schedule(static) shared(low,high,step)
            for (i = 1; i < (NUM_THREADS-1); ++i)
            {
                if (a[low+step*i] < num && a[low+step*(i+1)] > num)
                {
                    low = low + step*i + 1;
                    high = low + step*(i+1) - 1;
                }
            }
            printf("middle\nLow :- %d \nHigh :- %d\n\n",low,high);
        }
    }
    if (found == 1)
    {
        printf("Element found\n");
    }
    else
    {
        printf("Element Not found\n");
    }

}

int main()
{
    int i = 0;
    int startTime = omp_get_wtime();

    /* Dynamically allocate memory using malloc() */
    a = (int*)malloc(sizeof(int) * SIZE);
    #pragma omp parallel for schedule(static)
    for (i = 0; i < SIZE; ++i)
    {
        a[i] = i;

    }

    printf("Enter the element to be searched :- \n");
    scanf("%d", &num);

    nary(num);


    printf("\nExecution time :- %f\n", omp_get_wtime()-startTime);
    return 0;
}

并行执行输出:

Enter the element to be searched :- 
20
Low :- 0    High :- 100 Step :- 25

First element :- 0 by thread :- 0
First element :- 50 by thread :- 2
First element :- 25 by thread :- 1
First element :- 75 by thread :- 3

First 
Low :- 0 
High :- 24

Low :- 0    High :- 24  Step :- 6

First element :- 6 by thread :- 1
First element :- 18 by thread :- 3
First element :- 0 by thread :- 0
First element :- 12 by thread :- 2

Last
Low :- 19 
High :- 24

Low :- 19   High :- 24  Step :- 1

First element :- 20 by thread :- 1
First element :- 21 by thread :- 2
First element :- 19 by thread :- 0
First element :- 22 by thread :- 3

middle
Low :- 19 
High :- 24

Element found

Execution time :- 26.824379

串行执行输出:

Enter the element to be searched :- 
20
Low :- 0    High :- 100 Step :- 25

First element :- 0 by thread :- 0
First element :- 25 by thread :- 0
First element :- 50 by thread :- 0
First element :- 75 by thread :- 0

First 
Low :- 0 
High :- 24

Low :- 0    High :- 24  Step :- 6

First element :- 0 by thread :- 0
First element :- 6 by thread :- 0
First element :- 12 by thread :- 0
First element :- 18 by thread :- 0

Last
Low :- 19 
High :- 24

Low :- 19   High :- 24  Step :- 1

First element :- 19 by thread :- 0
First element :- 20 by thread :- 0
First element :- 21 by thread :- 0
First element :- 22 by thread :- 0

middle
Low :- 19 
High :- 24

Element found

Execution time :- 4.349347

这背后的原因是什么?这是因为代码中有很多条件语句,条件块中有for循环吗?

1 个答案:

答案 0 :(得分:3)

您的方法中存在许多小问题。

首先,二进制搜索速度非常快。在最坏的情况下,它只需要log 2 (n)次迭代。即使只有一万亿个要素进行搜索,这只有40次迭代!每次迭代都非常简单,基本上只需要一次内存访问。因此,对于大型数据集,我们在谈论最坏情况下的几微秒搜索时间。当然,这不会用printf来污染这些东西。

另一方面,根据some answers,产生一个线程大约需要10微秒。因此,即使是完美的扩展实现,基于并行化单个搜索,也没有任何实际性能提升的可能性。

查看特定代码,每次迭代创建两个并行区域。与并行区域和omp for工作共享构造(根据实现和操作系统可能会有很大差异)相比,每个线程只需要很少的工作量。

我发现arity和NUM_THREADS的混合有问题。您的更新步骤包含两个串行执行,剩余的NUM_THREADS-2间隔由NUM_THREADS个线程检查...因此对于NUM_THREADS=4,即使完美并行执行,您也只是减少了4个间隔检查到3个间隔检查,更新步骤加速1.3倍。

此外,您的代码包含严重的竞争条件:在第二个并行循环中修改low是一个非常糟糕的主意,因为其他线程正在根据low同时检查其间隔。

如果您希望切实提高在已排序的连续数据中搜索的效果,请查看these slides。如果您想使用OpenMP /线程加速应用程序,您可能应该在更粗糙的级别上进行此操作。