使用dtwclust时无法加载R lapack例程

时间:2017-04-11 02:42:04

标签: r shape lapack

我在dtwclust包中使用shape方法。当我运行以下代码时:

data(uciCT)
hc.sbd <- tsclust(CharTraj, type = "hierarchical",
                  k = 20L, distance = "sbd",
                  preproc = zscore, centroid = shape_extraction,
                  seed = 320L)

我有以下错误信息:

Error in eigen(M) : LAPACK routines cannot be loaded
In addition: Warning message:
In eigen(M) :
  unable to load shared     object '//PAPER/fchen4/R/R-3.3.2/modules/x64/lapack.dll':
  `maximal number of DLLs reached...

使用库(mgcv)后,我得到了:

Error in eigen(M) : LAPACK routines cannot be loaded

有谁可以帮我解决如何解决此错误。我在R lapack routines cannot be loaded尝试了答案。但他们不适合我。我还更新了所有包。但仍然无法工作。

sessionInfo()的信息是:

R version 3.3.2 (2016-10-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
locale:
[1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252     LC_MONETARY=English_Australia.1252 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.1252    
attached base packages:
[1] parallel  splines   stats     graphics  grDevices utils     datasets  methods   base 
other attached packages:
 [1] mgcv_1.8-17                     nlme_3.1-131                    dtwclust_3.1.2                  dtw_1.18-1                      clue_0.3-53                    
 [6] ROSE_0.0-3                      scatterplot3d_0.3-39            plot3D_1.1                      ggrepel_0.6.5                   pdfCluster_1.0-2               
[11] pastecs_1.3-18                  boot_1.3-18                     geosphere_1.5-5                 sp_1.2-4                        XLConnect_0.2-12               
[16] XLConnectJars_0.2-12            ica_1.0-1                       visNetwork_1.0.3                igraph_1.0.1                    Barnard_1.8                    
[21] Kendall_2.2                     pspearman_0.3-0                 FSelector_0.21                  dunn.test_1.3.4                 randomUniformForest_1.1.5      
[26] dbscan_1.1-1                    Hmisc_4.0-2                     Formula_1.2-1                   xgboost_0.6-4                   doParallel_1.0.10              
[31] iterators_1.0.8                 foreach_1.4.3                   corrplot_0.77                   gbm_2.1.3                       survival_2.41-3                
[36] AppliedPredictiveModeling_1.1-6 e1071_1.6-8                     mlbench_2.1-1                   caret_6.0-73                    lattice_0.20-35                
[41] fpc_2.1-10                      devtools_1.12.0                 lubridate_1.6.0                 ggmap_2.6.1                     gridExtra_2.2.1                
[46] leaflet_1.1.0                   qdap_2.2.5                      RColorBrewer_1.1-2              qdapTools_1.3.1                 qdapRegex_0.6.0                
[51] qdapDictionaries_1.0.6          stringr_1.2.0                   xtable_1.8-2                    tidyr_0.6.1                     scales_0.4.1                   
[56] plotly_4.5.6                    ggplot2_2.2.1                   psych_1.7.3.21                  mxnet_0.9.4                     randomForest_4.6-12            
[61] cluster_2.0.6                   pROC_1.9.1                      openxlsx_4.0.17                 proxy_0.4-17                    dplyr_0.5.0                    
[66] plyr_1.8.4                     
loaded via a namespace (and not attached):
  [1] backports_1.0.5     lazyeval_0.2.0      entropy_1.2.1       openNLP_0.2-6       crosstalk_1.0.0     digest_0.6.12       htmltools_0.3.5     gender_0.5.1       
  [9] gdata_2.17.0        magrittr_1.5        checkmate_1.8.2     memoise_1.0.0       xlsx_0.5.7          tm_0.7-1            wordcloud_2.5       jpeg_0.1-8         
 [17] colorspace_1.3-2    RWeka_0.4-33        RCurl_1.95-4.8      jsonlite_1.4        lme4_1.1-12         registry_0.3        gtable_0.2.0        MatrixModels_0.4-1 
 [25] car_2.1-4           kernlab_0.9-25      prabclus_2.2-6      DEoptimR_1.0-8      maps_3.1.1          SparseM_1.76        mvtnorm_1.0-6       rngtools_1.2.4     
 [33] DBI_0.6-1           Rcpp_0.12.10        CORElearn_1.50.3    plotrix_3.6-4       viridisLite_0.2.0   htmlTable_1.9       magic_1.5-6         foreign_0.8-67     
 [41] mapproj_1.2-4       mclust_5.2.3        stats4_3.3.2        htmlwidgets_0.8     httr_1.2.1          acepack_1.4.1       modeltools_0.2-21   XML_3.98-1.6       
 [49] rJava_0.9-8         flexmix_2.3-13      openNLPdata_1.5.3-2 nnet_7.3-12         venneuler_1.1-0     reshape2_1.4.2      munsell_0.4.3       tools_3.3.2        
 [57] geometry_0.3-6      knitr_1.15.1        ModelMetrics_1.1.0  robustbase_0.92-7   caTools_1.17.1      purrr_0.2.2         RgoogleMaps_1.4.1   mime_0.5           
 [65] quantreg_5.29       slam_0.1-40         compiler_3.3.2      flexclust_1.3-4     pbkrtest_0.4-7      png_0.1-7           tibble_1.3.0        stringi_1.1.5      
 [73] trimcluster_0.1-2   Matrix_1.2-8        nloptr_1.0.4        RWekajars_3.9.1-3   data.table_1.10.4   bitops_1.0-6        httpuv_1.3.3        R6_2.2.0           
 [81] latticeExtra_0.6-28 codetools_0.2-15    reports_0.1.4       MASS_7.3-45         gtools_3.5.0        assertthat_0.1      chron_2.3-50        proto_1.0.0        
 [89] xlsxjars_0.6.1      pkgmaker_0.22       rjson_0.2.15        withr_1.0.2         mnormt_1.5-5        diptest_0.75-7      grid_3.3.2          rpart_4.1-10       
 [97] class_7.3-14        minqa_1.2.4         misc3d_0.8-4        NLP_0.1-10          shiny_1.0.1         base64enc_0.1-3    

0 个答案:

没有答案