我的数据集如下所示:
> head(tempExp)
points.id wc2.0_30s_tavg_01 wc2.0_30s_tavg_02
1 AmsterdamGreenhouses_Calamagrostis eigejos-AM_Nhigh 3.1 3.2
2 AmsterdamGreenhouses_Molinia caerulea-AM_Nhigh 3.1 3.2
3 Bangor_Alnus-ECM/AM_Nlow 3.8 3.6
4 Bangor_Betula_pendula-ECM_Nlow 3.8 3.6
5 Bangor_Fagus-ECM_Nlow 3.8 3.6
6 BioCON_nolegumes_mixed-AM_Nlow -11.8 -7.9
wc2.0_30s_tavg_03 wc2.0_30s_tavg_04 wc2.0_30s_tavg_05 wc2.0_30s_tavg_06 wc2.0_30s_tavg_07
1 5.9 8.3 12.6 15.1 17.1
2 5.9 8.3 12.6 15.1 17.1
3 5.4 7.3 10.3 12.7 14.7
4 5.4 7.3 10.3 12.7 14.7
5 5.4 7.3 10.3 12.7 14.7
6 -1.2 7.2 14.5 19.3 21.8
对于每一行(id),我需要计算整行的平均值,但只包括值>>的那些列。 5.
答案 0 :(得分:1)
require(dplyr)
# simulate a similar data set
set.seed(1984)
x <- rep('',100)
for (i in 1:100)
{x[i] <- paste(sample(c(LETTERS, 0:9), 5, replace = T), collapse = '')}
df <- data.frame(ID = x, v1 = 3*rnorm(100),
v2 = 5+3*rnorm(100),
v3 = sample(1:20, 100, replace = T),
v4 = rpois(100,6),
v5 = rep(15,100))
head(df)
# ID v1 v2 v3 v4 v5
#1 XPNL0 7.839162 -1.341105 12 5 15
#2 5BQ3H -1.241025 7.651719 1 5 15
#3 5AZZH 2.185374 2.186604 6 4 15
#4 AKX7H 3.148868 2.513623 13 5 15
#5 VAW42 2.757498 3.888333 16 5 15
#6 F4UST -1.894727 4.587320 2 2 15
df %>%
mutate(avg =apply(df[,-1], 1,
function(x) mean(x[x >5]))) -> df
head(df)
# ID v1 v2 v3 v4 v5 avg
#1 XPNL0 7.839162 -1.341105 12 5 15 11.61305
#2 5BQ3H -1.241025 7.651719 1 5 15 11.32586
#3 5AZZH 2.185374 2.186604 6 4 15 10.50000
#4 AKX7H 3.148868 2.513623 13 5 15 14.00000
#5 VAW42 2.757498 3.888333 16 5 15 15.50000
#6 F4UST -1.894727 4.587320 2 2 15 15.00000