df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C' : [np.nan, 'bla2', np.nan, 'bla3', np.nan, np.nan, np.nan, np.nan]})
输出:
A B C
0 foo one NaN
1 bar one bla2
2 foo two NaN
3 bar three bla3
4 foo two NaN
5 bar two NaN
6 foo one NaN
7 foo three NaN
我想使用groupby来计算foo的不同组合的NaN数量。
预期产出(编辑):
A B C D
0 foo one NaN 2
1 bar one bla2 0
2 foo two NaN 2
3 bar three bla3 0
4 foo two NaN 2
5 bar two NaN 1
6 foo one NaN 2
7 foo three NaN 1
目前我正在尝试这个:
df['count']=df.groupby(['A'])['B'].isnull().transform('sum')
但这不起作用......
谢谢
答案 0 :(得分:9)
我认为您需要groupby
sum
NaN
个值:
df2 = df.C.isnull().groupby([df['A'],df['B']]).sum().astype(int).reset_index(name='count')
print (df2)
A B count
0 bar one 0
1 bar three 0
2 bar two 1
3 foo one 2
4 foo three 1
5 foo two 2
如果需要过滤首先添加boolean indexing
:
df = df[df['A'] == 'foo']
df2 = df.C.isnull().groupby([df['A'],df['B']]).sum().astype(int)
print (df2)
A B
foo one 2
three 1
two 2
或更简单:
df = df[df['A'] == 'foo']
df2 = df['B'].value_counts()
print (df2)
one 2
two 2
three 1
Name: B, dtype: int64
编辑:解决方案非常相似,只添加transform
:
df['D'] = df.C.isnull().groupby([df['A'],df['B']]).transform('sum').astype(int)
print (df)
A B C D
0 foo one NaN 2
1 bar one bla2 0
2 foo two NaN 2
3 bar three bla3 0
4 foo two NaN 2
5 bar two NaN 1
6 foo one NaN 2
7 foo three NaN 1
类似的解决方案:
df['D'] = df.C.isnull()
df['D'] = df.groupby(['A','B'])['D'].transform('sum').astype(int)
print (df)
A B C D
0 foo one NaN 2
1 bar one bla2 0
2 foo two NaN 2
3 bar three bla3 0
4 foo two NaN 2
5 bar two NaN 1
6 foo one NaN 2
7 foo three NaN 1
答案 1 :(得分:5)
df[df.A == 'foo'].groupby('b').agg({'C': lambda x: x.isnull().sum()})
返回:
=> C
B
one 2
three 1
two 2