df = pd.DataFrame({
'key1':[np.nan,'a','b','b','a'],
'data1':[2,5,8,5,7],
'key2':['ab', 'aa', np.nan, np.nan, 'one'],
'data2':[1,5,9,6,3],
'Sum over columns':[1,10,8,5,10]})
大家好,您能否帮我解决以下问题: 我试图对列进行求和以得到data1和data2的总和。
如果带有字符串(key1)的列不是NaN,而带字符串(key2)的列不是NaN,则将data1和data2相加。我想要的结果显示在sum列中。谢谢你的帮助!
答案 0 :(得分:0)
Try using the .apply
method of df
on axis=1
and numpy
's array multiplication function to get your desired output:
import numpy as np
import pandas as pd
df = pd.DataFrame({
'key1':[np.nan,'a','b','b','a'],
'data1':[2,5,8,5,7],
'key2':['ab', 'aa', np.nan, np.nan, 'one'],
'data2':[1,5,9,6,3]})
df['Sum over columns'] = df.apply(lambda x: np.multiply(x[0:2], ~x[2:4].isnull()).sum(), axis=1)
Or:
df['Sum over columns'] = np.multiply(df[['data1','data2']], ~df[['key1','key2']].isnull()).sum(axis=1)
Either one of them should yield:
# data1 data2 key1 key2 Sum over columns
# 0 2 1 NaN ab 1
# 1 5 5 a aa 10
# 2 8 9 b NaN 8
# 3 5 6 b NaN 5
# 4 7 3 a one 10
I hope this helps.