动态连接多个列上的两个spark-scala数据帧,无需硬编码连接条件

时间:2017-04-08 16:55:30

标签: scala join multiple-columns spark-dataframe

我想动态地在多个列上加入两个spark-scala数据帧。我将避免硬编码列名称比较,如以下声明中所示;

val joinRes = df1.join(df2, df1("col1") == df2("col1") and df1("col2") == df2("col2"))

此查询的解决方案已存在于pyspark版本中 - 在以下链接中提供 PySpark DataFrame - Join on multiple columns dynamically

我想使用spark-scala

编写相同的代码

1 个答案:

答案 0 :(得分:8)

在scala中,你可以像在python中一样使用它,但是你需要使用map和reduce函数:

val sparkSession = SparkSession.builder().getOrCreate()
import sparkSession.implicits._

val df1 = List("a,b", "b,c", "c,d").toDF("col1","col2")
val df2 = List("1,2", "2,c", "3,4").toDF("col1","col2")

val columnsdf1 = df1.columns
val columnsdf2 = df2.columns

val joinExprs = columnsdf1
   .zip(columnsdf2)
   .map{case (c1, c2) => df1(c1) === df2(c2)}
   .reduce(_ && _)

val dfJoinRes = df1.join(df2,joinExprs)