在我的项目中,有一个库,其中包含使用Autodesk的FBX SDK 2017.1加载fbx的代码。
在调试和放大器中加载fbx崩溃发布。崩溃发生在两种不同的方式,似乎是随机的:
代码确实包含realloc()调用,特别是在FbxStream的自定义实现中使用的缓冲区分配
大多数代码路径对于Windows完全相同,只重新实现了许多特定于平台的部分。在Windows上,它按预期运行。
让我感到震惊的是,如果我在gdb或valgrind中运行该程序,崩溃就会消失!所以我开始寻找未初始化的成员/价值观,但到目前为止我找不到任何可疑的东西。我使用了CppDepend / CppCheck和VS2012代码分析,但是在未初始化的变量/成员上都是空的
给出FBX加载的一些背景知识; FBX SDK有许多方法可以处理不同类型的资源(obj,3ds,fbx,..)。它们可以从文件或流中加载。为了支持大文件,流选项是更相关的选项。下面的代码远非完美,但我目前最感兴趣的是valgrind / gdb不会崩溃的原因。我把SDK文档放在ReadString之上,因为它是最复杂的。
class MyFbxStream : public FbxStream{
uint32 m_FormatID;
uint32 m_Error;
EState m_State;
size_t m_Pos;
size_t m_Size;
const Engine::Buffer* const m_Buffer;
MyFbxStream& operator = (const MyFbxStream& other) const;
public:
MyFbxStream(const Engine::Buffer* const buffer)
: m_FormatID(0)
, m_Error(0)
, m_State(eClosed)
, m_Pos(0)
, m_Size(0)
, m_Buffer(buffer) {};
virtual ~MyFbxStream() {};
virtual bool Open(void* pStreamData) {
m_FormatID = *(uint32*)pStreamData;
m_Pos = 0;
m_State = eOpen;
m_Size = m_Buffer->GetSize();
return true;
}
virtual bool Close() {
m_Pos = m_Size = 0;
m_State = eClosed;
return true;
}
virtual int Read(void* pData, int pSize) const {
const unsigned char* data = (m_Buffer->GetBase(m_Pos));
const size_t bytesRead = m_Pos + pSize > m_Buffer->GetSize() ? (m_Buffer->GetSize() - m_Pos) : pSize;
const_cast<MyFbxStream*>(this)->m_Pos += bytesRead;
memcpy(pData, data, bytesRead);
return (int)bytesRead;
}
/** Read a string from the stream.
* The default implementation is written in terms of Read() but does not cope with DOS line endings.
* Subclasses may need to override this if DOS line endings are to be supported.
* \param pBuffer Pointer to the memory block where the read bytes are stored.
* \param pMaxSize Maximum number of bytes to be read from the stream.
* \param pStopAtFirstWhiteSpace Stop reading when any whitespace is encountered. Otherwise read to end of line (like fgets()).
* \return pBuffer, if successful, else NULL.
* \remark The default implementation terminates the \e pBuffer with a null character and assumes there is enough room for it.
* For example, a call with \e pMaxSize = 1 will fill \e pBuffer with the null character only. */
virtual char* ReadString(char* pBuffer, int pMaxSize, bool pStopAtFirstWhiteSpace = false) {
assert(!pStopAtFirstWhiteSpace); // "Not supported"
const size_t pSize = pMaxSize - 1;
if (pSize) {
const char* const base = (const char* const)m_Buffer->GetBase();
char* cBuffer = pBuffer;
const size_t totalSize = std::min(m_Buffer->GetSize(), (m_Pos + pSize));
const char* const maxSize = base + totalSize;
const char* sum = base + m_Pos;
bool done = false;
// first align the copy on alignment boundary (4byte)
while ((((size_t)sum & 0x3) != 0) && (sum < maxSize)) {
const unsigned char c = *sum++;
*cBuffer++ = c;
if ((c == '\n') || (c == '\r')) {
done = true;
break;
} }
// copy from alignment boundary to boundary (4byte)
if (!done) {
int64 newBytesRead = 0;
uint32* dBuffer = (uint32*)cBuffer;
const uint32* dBase = (uint32*)sum;
const uint32* const dmaxSize = ((uint32*)maxSize) - 1;
while (dBase < dmaxSize) {
const uint32 data = *(const uint32*const)dBase++;
*dBuffer++ = data;
if (((data & 0xff) == 0x0a) || ((data & 0xff) == 0x0d)) { // third bytes, 4 bytes read..
newBytesRead -= 3;
done = true;
break;
} else {
const uint32 shiftedData8 = data & 0xff00;
if ((shiftedData8 == 0x0a00) || (shiftedData8 == 0x0d00)) { // third bytes, 3 bytes read..
newBytesRead -= 2;
done = true;
break;
} else {
const uint32 shiftedData16 = data & 0xff0000;
if ((shiftedData16 == 0x0a0000) || (shiftedData16 == 0x0d0000)) { // second byte, 2 bytes read..
newBytesRead -= 1;
done = true;
break;
} else {
const uint32 shiftedData24 = data & 0xff000000;
if ((shiftedData24 == 0x0a000000) || (shiftedData24 == 0x0d000000)) { // first byte, 1 bytes read..
done = true;
break;
} } } } }
newBytesRead += (int64)dBuffer - (int64)cBuffer;
if (newBytesRead) {
sum += newBytesRead;
cBuffer += newBytesRead;
} }
// copy anything beyond the last alignment boundary (4byte)
if (!done) {
while (sum < maxSize) {
const unsigned char c = *sum++;
*cBuffer++ = c;
if ((c == '\n') || (c == '\r')) {
done = true;
break;
} } }
const size_t bytesRead = cBuffer - pBuffer;
if (bytesRead) {
const_cast<MyFbxStream*>(this)->m_Pos += bytesRead;
pBuffer[bytesRead] = 0;
return pBuffer;
} }
pBuffer = NULL;
return NULL;
}
virtual void Seek(const FbxInt64& pOffset, const FbxFile::ESeekPos& pSeekPos) {
switch (pSeekPos) {
case FbxFile::ESeekPos::eBegin: m_Pos = pOffset; break;
case FbxFile::ESeekPos::eCurrent: m_Pos += pOffset; break;
case FbxFile::ESeekPos::eEnd: m_Pos = m_Size - pOffset; break;
}
}
virtual long GetPosition() const { return (long)m_Pos; }
virtual void SetPosition(long position) { m_Pos = position; }
virtual void ClearError() { m_Error = 0; }
virtual int GetError() const { return m_Error; }
virtual EState GetState() { return m_State; }
virtual int GetReaderID() const { return m_FormatID; }
virtual int GetWriterID() const { return -1; } // readonly stream
virtual bool Flush() { return true; } // readonly stream
virtual int Write(const void* /*d*/, int /*s*/) { assert(false); return 0; } // readonly stream
};
我假设可能存在与malloc / free / realloc操作相关的未定义行为,这些行为在gdb中不会发生。但如果是这种情况,我也希望Windows二进制文件有问题。
另外,我不知道这是否相关,但是当我追踪Open()函数并打印“m_Buffer”指针的值(或“this”)时,我得到一个以0xfffffff开头的指针值..对于Windows程序员来说,这似乎是一个问题。但是,我可以在linux中得出相同的结论,因为我也在静态函数调用等中看到了这种情况。
答案 0 :(得分:5)