在开始使用Keras的官方二进制分类示例(参见here)之后,我正在实现一个Tensorflow作为后端的多类分类器。 在这个例子中,有两个类(狗/猫),我现在有50个类,数据以相同的方式存储在文件夹中。
培训时,损失不会下降,准确性也不会提高。
我更改了使用sigmoid
函数的最后一层使用softmax
,将binary_crossentropy
更改为categorical_crossentropy
,并将class_mode
更改为{{1 }}
这是我的代码:
categorical
有关我可能出错的地方的任何想法? 任何输入将非常感谢!
编辑: 正如@RobertValencia所问,这是最新培训日志的开始:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import keras.optimizers
optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
# dimensions of our images.
img_width, img_height = 224, 224
train_data_dir = 'images/train'
validation_data_dir = 'images/val'
nb_train_samples = 209222
nb_validation_samples = 40000
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(50))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
train_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
directory=train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = train_datagen.flow_from_directory(
directory=validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.save_weights('weights.h5')
答案 0 :(得分:0)
考虑到需要区分的类的数量,可能会增加模型的复杂性,以及使用不同的优化器,可能会产生更好的结果。尝试使用这个部分基于VGG-16 CNN架构的模型,但不是那么复杂:
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu'))
model.add(Convolution2D(32, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(1024, activation='relu'))
model.add(Dense(50, activation='softmax'))
optimizer = Nadam(lr=0.002,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-08,
schedule_decay=0.004)
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['categorical_accuracy'])
如果您的效果更好,我建议您查看VGG-16型号: