我正在通过Python Data Science Essentials (2nd Edition)。
本书提供以下代码:
chosen_random_state = 1
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.30, ran-dom_state=chosen_random_state)
print ("(X train shape %s, X test shape %s, \ny train shape %s, y test shape %s" \
% (X_train.shape, X_test.shape, y_train.shape, y_test.shape))
h1.fit(X_train,y_train)
print (h1.score(X_test,y_test))
当我尝试运行它时,我收到以下错误:
----------------------------------------------- ---------------------------- NameError Traceback(最近一次调用 最后)in() 1 selected_random_state = 1 ----> 2 X_train,X_test,y_train,y_test = cross_validation.train_test_split(X,y,test_size = 0.30, random_state = chosen_random_state) 3打印(“(X列车形状%s,X测试形状%s,\ n列车形状%s,y测试形状%s”%(X_train.shape,X_test.shape,y_train.shape, y_test.shape)) 4 h1.fit(X_train,y_train) 5打印(h1.score(X_test,y_test))
NameError:未定义名称'cross_validation'
我怀疑我可能要导入一本书未提及的图书馆。我搜索了手册但找不到这个功能。这是我需要创建的功能,还是有人可以指向相关的库?
答案 0 :(得分:6)
MouseManager& GameManager::getMouseManager(){
return mouseManager;
}
的{p} cross_validation
子模块为deprecated。您应该使用sklearn
instead
module_selection
答案 1 :(得分:0)
您必须导入:
from sklearn.svm.libsvm import cross_validation
答案 2 :(得分:0)
答案 3 :(得分:0)
这应该可以解决您的问题。试试
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, ran-dom_state=chosen_random_state)
print ("(X train shape %s, X test shape %s, \ny train shape %s, y test shape %s" \
% (X_train.shape, X_test.shape, y_train.shape, y_test.shape))
h1.fit(X_train,y_train)
答案 4 :(得分:0)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.30, ran-dom_state=chosen_random_state)
print ("(X train shape %s, X test shape %s, \ny train shape %s, y test shape %s" \
% (X_train.shape, X_test.shape, y_train.shape, y_test.shape))
h1.fit(X_train,y_train)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.30, ran-dom_state=chosen_random_state)
print ("(X train shape %s, X test shape %s, \ny train shape %s, y test shape %s" \
% (X_train.shape, X_test.shape, y_train.shape, y_test.shape))
h1.fit(X_train,y_train)