按行排列numpy数组的Softmax函数

时间:2017-04-08 04:20:47

标签: python arrays numpy neural-network softmax

我正在尝试将softmax函数应用于numpy数组。但我没有得到预期的结果。这是我尝试过的代码:

 import numpy as np
 x = np.array([[1001,1002],[3,4]])
 softmax = np.exp(x - np.max(x))/(np.sum(np.exp(x - np.max(x)))
 print softmax

我认为x - np.max(x)代码没有减去每行的最大值。需要从x中减去最大值以防止非常大的数字。

这应该输出

 np.array([
    [0.26894142, 0.73105858],
    [0.26894142, 0.73105858]])

但我得到了:

np.array([
    [0.26894142, 0.73105858],
    [0, 0]])

5 个答案:

答案 0 :(得分:3)

保持“减少”操作(例如maxsum)所消耗的轴的便捷方法是keepdims关键字:

mx = np.max(x, axis=-1, keepdims=True)
mx
# array([[1002],
#        [   4]])
x - mx
# array([[-1,  0],
#        [-1,  0]])
numerator = np.exp(x - mx)
denominator = np.sum(numerator, axis=-1, keepdims=True)
denominator
# array([[ 1.36787944],
#        [ 1.36787944]])
numerator/denominator
# array([[ 0.26894142,  0.73105858],
         [ 0.26894142,  0.73105858]])

答案 1 :(得分:2)

修改即可。从版本1.2.0开始,scipy包含softmax作为特殊功能:

https://scipy.github.io/devdocs/generated/scipy.special.softmax.html

我写了一个非常通用的softmax函数,在任意轴上运行,包括棘手的最大减法位。功能如下,我写了blog post about it here

def softmax(X, theta = 1.0, axis = None):
    """
    Compute the softmax of each element along an axis of X.

    Parameters
    ----------
    X: ND-Array. Probably should be floats. 
    theta (optional): float parameter, used as a multiplier
        prior to exponentiation. Default = 1.0
    axis (optional): axis to compute values along. Default is the 
        first non-singleton axis.

    Returns an array the same size as X. The result will sum to 1
    along the specified axis.
    """

    # make X at least 2d
    y = np.atleast_2d(X)

    # find axis
    if axis is None:
        axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)

    # multiply y against the theta parameter, 
    y = y * float(theta)

    # subtract the max for numerical stability
    y = y - np.expand_dims(np.max(y, axis = axis), axis)

    # exponentiate y
    y = np.exp(y)

    # take the sum along the specified axis
    ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)

    # finally: divide elementwise
    p = y / ax_sum

    # flatten if X was 1D
    if len(X.shape) == 1: p = p.flatten()

    return p

答案 2 :(得分:1)

x - np.max(x)代码没有进行逐行减法。 让我们逐步做到。首先,我们将通过平铺或复制列来创建“maxes”数组:

maxes = np.tile(np.max(x,1), (2,1)).T

这将创建一个2X2矩阵,通过制作重复列(tile)来对应每行的最大值。在此之后你可以这样做:

 x = np.exp(x - maxes)/(np.sum(np.exp(x - maxes), axis = 1))

你应该得到你的结果。 axis = 1适用于您在答案标题中提到的行式softmax。希望这会有所帮助。

答案 3 :(得分:1)

这个怎么样?

沿着行取max只需将参数指定为axis=1,然后使用np.newaxis/None将结果转换为列向量(实际上是2D数组)。

In [40]: x
Out[40]: 
array([[1001, 1002],
       [   3,    4]])

In [41]: z = x - np.max(x, axis=1)[:, np.newaxis]

In [42]: z
Out[42]: 
array([[-1,  0],
       [-1,  0]])

In [44]: softmax = np.exp(z) / np.sum(np.exp(z), axis=1)[:, np.newaxis]

In [45]: softmax
Out[45]: 
array([[ 0.26894142,  0.73105858],
       [ 0.26894142,  0.73105858]])

在最后一步中,再次获取总和时,只需指定参数axis=1即可将其与行相加。

答案 4 :(得分:1)

我的5-liner(使用scipy logsumexp获取棘手的位):

def softmax(a, axis=None):
    """
    Computes exp(a)/sumexp(a); relies on scipy logsumexp implementation.
    :param a: ndarray/tensor
    :param axis: axis to sum over; default (None) sums over everything
    """
    from scipy.special import logsumexp
    lse = logsumexp(a, axis=axis)  # this reduces along axis
    if axis is not None:
        lse = np.expand_dims(lse, axis)  # restore that axis for subtraction
    return np.exp(a - lse)

如果您的scipy版本较旧,则可能必须使用from scipy.misc import logsumexp