我正在尝试使用seaborn生成热图,但是我的数据格式化问题很小。
目前,我的数据格式为:
Name Diag Date
A 1 2006-12-01
A 1 1994-02-12
A 2 2001-07-23
B 2 1999-09-12
B 1 2016-10-12
C 3 2010-01-20
C 2 1998-08-20
我想创建一个热图(最好是在python中),在Name
的一个轴上显示Diag
- 如果发生的话。我试图使用pd.pivot
来转动表,但是我得到了错误
ValueError:索引包含重复的条目,无法重塑
这来自:
piv = df.pivot_table(index ='Name',columns ='Diag')
时间无关紧要,但我希望显示Names
哪个Diag
以及Diag
个组合在一起的Name
组合。我是否需要为此创建一个新表,或者我有可能吗?在某些情况下,Diag
与所有Error starting ApplicationContext. To display the auto-configuration report re-run your application with 'debug' enabled.
06/04/2017 14:11:24.732 ERROR [main] - org.springframework.boot.SpringApplication: Application startup failed
org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'jpaMappingContext': Invocation of init method failed; nested exception is java.lang.IllegalArgumentException: At least one JPA metamodel must be present!
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1628)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:555)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:483)
at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:306)
at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:230)
at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:302)
at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:197)
at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:742)
at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:866)
at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:542)
at org.springframework.boot.context.embedded.EmbeddedWebApplicationContext.refresh(EmbeddedWebApplicationContext.java:122)
at org.springframework.boot.SpringApplication.refresh(SpringApplication.java:737)
at org.springframework.boot.SpringApplication.refreshContext(SpringApplication.java:370)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:314)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:1162)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:1151)
at com.cadit.web.WebApplicationAware.main(WebApplicationAware.java:19)
Caused by: java.lang.IllegalArgumentException: At least one JPA metamodel must be present!
at org.springframework.util.Assert.notEmpty(Assert.java:277)
at org.springframework.data.jpa.mapping.JpaMetamodelMappingContext.<init>(JpaMetamodelMappingContext.java:52)
at org.springframework.data.jpa.repository.config.JpaMetamodelMappingContextFactoryBean.createInstance(JpaMetamodelMappingContextFactoryBean.java:71)
at org.springframework.data.jpa.repository.config.JpaMetamodelMappingContextFactoryBean.createInstance(JpaMetamodelMappingContextFactoryBean.java:26)
at org.springframework.beans.factory.config.AbstractFactoryBean.afterPropertiesSet(AbstractFactoryBean.java:134)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1687)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1624)
... 16 common frames omitted
编辑: 我从那以后尝试过: piv = df.pivot_table(index ='Name',columns ='Diag',values ='Time',aggfunc ='mean')
然而,由于时间是日期时间格式,我最终得到:
pandas.core.base.DataError:没有要聚合的数字类型
答案 0 :(得分:4)
您需要pivot_table
一些聚合函数,因为相同的索引和列有多个值而pivot
只需要唯一值:
print (df)
Name Diag Time
0 A 1 12 <-duplicates for same A, 1 different value
1 A 1 13 <-duplicates for same A, 1 different value
2 A 2 14
3 B 2 18
4 B 1 1
5 C 3 9
6 C 2 8
df = df.pivot_table(index='Name',columns='Diag', values='Time', aggfunc='mean')
print (df)
Diag 1 2 3
Name
A 12.5 14.0 NaN
B 1.0 18.0 NaN
C NaN 8.0 9.0
替代解决方案:
df = df.groupby(['Name','Diag'])['Time'].mean().unstack()
print (df)
Diag 1 2 3
Name
A 12.5 14.0 NaN
B 1.0 18.0 NaN
C NaN 8.0 9.0
编辑:
您还可以按duplicated
检查所有重复项:
df = df.loc[df.duplicated(['Name','Diag'], keep=False), ['Name','Diag']]
print (df)
Name Diag
0 A 1
1 A 1
编辑:
mean
日期时间并不容易 - 需要将日期转换为nanoseconds
,获取均值并最后转换为日期时间。还有另一个问题 - 需要将NaN
替换为某个标量,例如0
转化为0
日期时间 - 1970-01-01
的内容。
df.Date = pd.to_datetime(df.Date)
df['dates_in_ns'] = pd.Series(df.Date.values.astype(np.int64), index=df.index)
df = df.pivot_table(index='Name',
columns='Diag',
values='dates_in_ns',
aggfunc='mean',
fill_value=0)
df = df.apply(pd.to_datetime)
print (df)
Diag 1 2 3
Name
A 2000-07-07 12:00:00 2001-07-23 1970-01-01
B 2016-10-12 00:00:00 1999-09-12 1970-01-01
C 1970-01-01 00:00:00 1998-08-20 2010-01-20