我想编写Spark UDAF,其中列的类型可以是任何在其上定义了Scala Numeric的列。我通过互联网进行了搜索,但只找到了具体类型的示例,例如[key : value]
,DoubleType
。这不可能吗?但是如何将UDAF与其他数值一起使用?
答案 0 :(得分:9)
为简单起见,我们假设您要定义自定义sum
。您将为输入类型提供TypeTag
并使用Scala反射来定义模式:
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import scala.reflect.runtime.universe._
import org.apache.spark.sql.catalyst.ScalaReflection.schemaFor
case class MySum [T : TypeTag](implicit n: Numeric[T])
extends UserDefinedAggregateFunction {
val dt = schemaFor[T].dataType
def inputSchema = new StructType().add("x", dt)
def bufferSchema = new StructType().add("x", dt)
def dataType = dt
def deterministic = true
def initialize(buffer: MutableAggregationBuffer) = buffer.update(0, n.zero)
def update(buffer: MutableAggregationBuffer, input: Row) = {
if (!input.isNullAt(0))
buffer.update(0, n.plus(buffer.getAs[T](0), input.getAs[T](0)))
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
buffer1.update(0, n.plus(buffer1.getAs[T](0), buffer2.getAs[T](0)))
}
def evaluate(buffer: Row) = buffer.getAs[T](0)
}
使用上面定义的函数,我们可以创建特定于实例的处理类型:
val sumOfLong = MySum[Long]
spark.range(10).select(sumOfLong($"id")).show
+---------+
|mysum(id)|
+---------+
| 45|
+---------+
注意强>:
要获得与内置聚合函数相同的灵活性,您必须定义自己的AggregateFunction
,例如ImperativeAggregate
或DeclarativeAggregate
。这是可能的,但它是一个内部API。