我想创建一个从迭代器填充的队列。但是,在以下MWE中,始终将相同的值排入队列:
import tensorflow as tf
import numpy as np
# data
imgs = [np.random.randn(i,i) for i in [2,3,4,5]]
# iterate through data infinitly
def data_iterator():
while True:
for img in imgs:
yield img
it = data_iterator()
# create queue for data
q = tf.FIFOQueue(capacity=5, dtypes=[tf.float64])
# feed next element from iterator
enqueue_op = q.enqueue(list(next(it)))
# setup queue runner
numberOfThreads = 1
qr = tf.train.QueueRunner(q, [enqueue_op] * numberOfThreads)
tf.train.add_queue_runner(qr)
# dequeue
dequeue_op = q.dequeue()
dequeue_op = tf.Print(dequeue_op, data=[dequeue_op], message="dequeue()")
# We start the session as usual ...
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(10):
data = sess.run(dequeue_op)
print(data)
.
coord.request_stop()
coord.join(threads)
我是否必须使用feed_dict
?如果是,我该如何与QueueRunner结合使用?
答案 0 :(得分:3)
运行时
enqueue_op = q.enqueue(list(next(it)))
tensorflow将执行列表(下一个(它))一次。此后,它将保存此第一个列表,并在每次运行enqueue_op
时将其添加到q。为避免这种情况,您必须使用占位符。提供占位符与tf.train.QueueRunner
不兼容。而是使用它:
import tensorflow as tf
import numpy as np
import threading
# data
imgs = [np.random.randn(i,i) for i in [2,3,4,5]]
# iterate through data infinitly
def data_iterator():
while True:
for img in imgs:
yield img
it = data_iterator()
# create queue for data
q = tf.FIFOQueue(capacity=5, dtypes=[tf.float64])
# feed next element from iterator
img_p = tf.placeholder(tf.float64, [None, None])
enqueue_op = q.enqueue(img_p)
dequeue_op = q.dequeue()
with tf.Session() as sess:
coord = tf.train.Coordinator()
def enqueue_thread():
with coord.stop_on_exception():
while not coord.should_stop():
sess.run(enqueue_op, feed_dict={img_p: list(next(it))})
numberOfThreads = 1
for i in range(numberOfThreads):
threading.Thread(target=enqueue_thread).start()
for i in range(3):
data = sess.run(dequeue_op)
print(data)