'''导入用于模拟的库''
import tensorflow as tf
import numpy as np
'''进口可视化'''
from PIL.Image
from io import BytesIO
from IPython.display import Image, display
'''现在我们定义一个功能,以便在我们拥有图像后实际显示图像 迭代计数''
def DisplayFractal(a, fmt='jpeg'):
img =np.concatenate([10+20*np.cos(a_cyclic),30+50*np.sin(a_cyclic),155-
80*np.cos(a_cyclic)], 2)
img[a==a.max()] = 0
a = img
a = np.uint8(np.clip(a, 0, 255))
f = BytesIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
sess = tf.InteractiveSession()
# Use NumPy to create a 2D array of complex numbers
Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]
Z = X+1j*Y
print(Z)
#Now we define and initialize TensorFlow tensors.
xs = tf.constant(Z.astype(np.complex64))
zs = tf.Variable(xs)
ns = tf.Variable(tf.zeros_like(xs, tf.float32))
tf.global_variables_initializer().run()
zs_ = zs*zs + xs
print(zs)
# Have we diverged with this new value?
not_diverged = tf.abs(zs_) < 4
&#39;&#39;&#39; 更新zs和迭代计数的操作。 注意:我们在分歧后继续计算zs!这个 非常浪费!如果有一点,那就更好了 不太简单,方法这样做。 &#39;&#39;&#39; step = tf.group(zs.assign(zs_),ns.assign_add(tf.cast(not_diverged, tf.float32)))
for i in range(200): step.run()
DisplayFractal(ns.eval())
答案 0 :(得分:1)
我遇到了同样的问题。您必须在Jupyter笔记本中运行TensorFlow示例: http://jupyter.org/
如果您从其他IDE(Spyder)运行它,您将在控制台中看到<IPython.core.display.Image object>
。
答案 1 :(得分:0)
但真正的问题是如果没有jupyter就可以做到......
答案 2 :(得分:-2)
def displayFractal(a,fmt='jpeg'):
a_cyclic=(6.28*a/200.0).reshape(list(a.shape)+[1])
# emmm I have changed the number. you can just continue your number
img=np.concatenate([5+10*np.cos(a_cyclic),15+25*np.sin(a_cyclic),70-40*np.cos(a_cyclic)],2)
img[a==a.max()]=0
a=img
a=np.uint8(np.clip(a,0,255))
plt.imshow(PIL.Image.fromarray(a))
plt.show()
当然你应该首先将matplotlib .pyplot导入为plt。