pandas:合并两个不同名称的列?

时间:2017-04-04 10:42:39

标签: python pandas dataframe merge concatenation

我正在尝试连接上面和下面的两个数据帧。不是并排连接。

数据帧包含相同的数据,但是,在第一个数据帧中,一列可能具有名称" ObjectType"在第二个数据框中,该列可能具有名称" ObjectClass"。当我做的时候

df_total = pandas.concat ([df0, df1])

df_total将有两个列名,一个用" ObjectType"和#34; ObjectClass"。在这两列中的每一列中,一半的值将是" NaN"。所以我必须手动将这两列合并为一个很痛苦的列。

我可以以某种方式将两列合并为一列吗?我希望有一个功能,例如:

df_total = pandas.merge_many_columns(input=["ObjectType,"ObjectClass"], output=["MyObjectClasses"]

合并两列并创建一个新列。我已经研究过melt(),但它并没有真正做到这一点?

(如果我可以指定如果发生碰撞会发生什么事情,可能会很好,比如说两列包含值,在这种情况下,我提供一个lambda函数,表示"保持最大值" ,"使用平均值"等)

2 个答案:

答案 0 :(得分:4)

我认为您可以先重命名列,以便在两个DataFrame中对齐数据:

df0 = pd.DataFrame({'ObjectType':[1,2,3],
                   'B':[4,5,6],
                   'C':[7,8,9]})

#print (df0)

df1 = pd.DataFrame({'ObjectClass':[1,2,3],
                   'B':[4,5,6],
                   'C':[7,8,9]})

#print (df1)

inputs= ["ObjectType","ObjectClass"]
output= "MyObjectClasses"

#dict comprehension 
d = {x:output for x in inputs}
print (d)
{'ObjectType': 'MyObjectClasses', 'ObjectClass': 'MyObjectClasses'}

df0 = df0.rename(columns=d)
df1 = df1.rename(columns=d)
df_total = pd.concat([df0, df1], ignore_index=True)
print (df_total)
   B  C  MyObjectClasses
0  4  7                1
1  5  8                2
2  6  9                3
3  4  7                1
4  5  8                2
5  6  9                3

编辑:

更简单的是update(工作inplace):

df = pd.concat([df0, df1])
df['ObjectType'].update(df['ObjectClass'])
print (df)
   B  C  ObjectClass  ObjectType
0  4  7          NaN         1.0
1  5  8          NaN         2.0
2  6  9          NaN         3.0
0  4  7          1.0         1.0
1  5  8          2.0         2.0
2  6  9          3.0         3.0

fillna,但随后需要删除原始列列:

df = pd.concat([df0, df1])
df["ObjectType"] = df['ObjectType'].fillna(df['ObjectClass'])
df = df.drop('ObjectClass', axis=1)
print (df)
   B  C  ObjectType
0  4  7         1.0
1  5  8         2.0
2  6  9         3.0
0  4  7         1.0
1  5  8         2.0
2  6  9         3.0
df = pd.concat([df0, df1])
df["MyObjectClasses"] = df['ObjectType'].fillna(df['ObjectClass'])
df = df.drop(['ObjectType','ObjectClass'], axis=1)
print (df)
   B  C  MyObjectClasses
0  4  7              1.0
1  5  8              2.0
2  6  9              3.0
0  4  7              1.0
1  5  8              2.0
2  6  9              3.0

EDIT1:

<强>计时

df0 = pd.DataFrame({'ObjectType':[1,2,3],
                   'B':[4,5,6],
                   'C':[7,8,9]})

#print (df0)

df1 = pd.DataFrame({'ObjectClass':[1,2,3],
                   'B':[4,5,6],
                   'C':[7,8,9]})

#print (df1)
df0 = pd.concat([df0]*1000).reset_index(drop=True)
df1 = pd.concat([df1]*1000).reset_index(drop=True)

inputs= ["ObjectType","ObjectClass"]
output= "MyObjectClasses"

#dict comprehension 
d = {x:output for x in inputs}
In [241]: %timeit df_total = pd.concat([df0.rename(columns=d), df1.rename(columns=d)], ignore_index=True)
1000 loops, best of 3: 821 µs per loop

In [240]: %%timeit
     ...: df = pd.concat([df0, df1])
     ...: df['ObjectType'].update(df['ObjectClass'])
     ...: df = df.drop(['ObjectType','ObjectClass'], axis=1)
     ...: 

100 loops, best of 3: 2.18 ms per loop

In [242]: %%timeit
     ...: df = pd.concat([df0, df1])
     ...: df['MyObjectClasses'] = df['ObjectType'].combine_first(df['ObjectClass'])
     ...: df = df.drop(['ObjectType','ObjectClass'], axis=1)
     ...: 
100 loops, best of 3: 2.21 ms per loop

In [243]: %%timeit 
     ...: df = pd.concat([df0, df1])
     ...: df['MyObjectClasses'] = df['ObjectType'].fillna(df['ObjectClass'])
     ...: df = df.drop(['ObjectType','ObjectClass'], axis=1)
     ...: 
100 loops, best of 3: 2.28 ms per loop

答案 1 :(得分:1)

您可以使用combine_first

将两个由Nan分隔的列合并为一个
>>> import numpy as np
>>> import pandas as pd
>>>
>>> df0 = pd.DataFrame({'ObjectType':[1,2,3],
                    'B':[4,5,6],
                    'C':[7,8,9]})

>>> df1 = pd.DataFrame({'ObjectClass':[1,2,3],
                    'B':[4,5,6],
                    'C':[7,8,9]})

>>> df = pd.concat([df0, df1])
>>> df['ObjectType'] = df['ObjectType'].combine_first(df['ObjectClass'])
>>> df['ObjectType']

0    1
1    2
2    3
0    1
1    2
3    3
Name: ObjectType, dtype: float64