如果有人能帮助我找到解决问题的更快解决方案,我将非常感激。
下面是场景: - 我有一个浮点数的多边形,我想要映射到网格。网格单元可以是不同的宽度和高度,不像我的图像显示那样均匀。即矩形。
我尝试使用图片绘制,但它只使用整数。将浮点数转换为整数表示我必须向上缩放浮点数并删除小数以保持一定的精度,但图像绘制将不适用于较大的点多边形。
是否有一种更为雄辩和快速的方法来实现多边形的填充区域的一个numpy数组(蓝色)和其余的零(红色)。我已经阅读了一些关于网格的内容,但是无法看到它如何用于这种情况。
非常感谢
代码的结果是
cols = 4
rows = 4
points = [[1535116L, 1725047L], [1535116L, 2125046L], [-464884L, 2125046L], [-464884L, 125046L]]
bbCut = getPythonBoundBox(points)
cutWidth = bbCut[1][0]-bbCut[0][0]
scale = float(cutWidth) / float(rows)
###Center data to origin
for p in range(len(points)):
points[p][0] -= (bbCut[1][0] - bbCut[0][0])/2
points[p][1] -= (bbCut[1][1] - bbCut[0][1])/2
points[p][0] /= scale
points[p][1] /= scale
##move points to Zero
bbCut = getPythonBoundBox(points)
for p in range(len(points)):
points[p][0] -=bbCut[0][0]
points[p][1] -=bbCut[0][1]
pointToTuple= []
for p in range(len(points)):
pointToTuple.append((points[p][0], points[p][1]))
imgWidth = float(rows)
imgHeight = float(cols)
img = Image.new('L', (int(imgWidth), int(imgHeight)), 0)
draw = ImageDraw.Draw(img)
draw.polygon(pointToTuple, fill=1)
array = np.reshape(list(img.getdata()), (cols, rows))
############This is the result from the array############
##If you compare this array to the coloured scaled image ive have drawn
##its missing a 1 on the second value in the first row
##and another 1 on the second row 3rd value
##I'm assuming there is some parsing happening here with float to int?
array([1, 0, 0, 0])
array([1, 1, 0, 0])
array([1, 1, 1, 1])
array([1, 1, 1, 1])
#########################################################
def getPythonBoundBox(points):
bigNumber = 10e10
xmin = bigNumber
xmax = -bigNumber
ymin = bigNumber
ymax = -bigNumber
g = []
a = len(points)
for i in xrange(a):
if points[i][0] < xmin: xmin = points[i][0]
if points[i][0] > xmax: xmax = points[i][0]
if points[i][1] < ymin: ymin = points[i][1]
if points[i][1] > ymax: ymax = points[i][1]
p1 = [xmin,ymin]
g.append(p1)
p2 = [xmax,ymax]
g.append(p2)
return (g)
答案 0 :(得分:1)
matplotlib.path.Path
有一个方法contains_points
。因此,只需使用多边形点实例化路径,然后检查网格坐标是否属于该路径。您的网格可以具有您想要的任何分辨率。这由以下代码中的nx
和ny
(或dx
和dy
)控制。
代码:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import PathPatch
from matplotlib.path import Path
# create a matplotlib path
points = [[1535116L, 1725047L],
[1535116L, 2125046L],
[-464884L, 2125046L],
[-464884L, 125046L],
[1535116L, 1725047L]]
codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]
path = Path(points, codes)
# check the path
fig, (ax1, ax2, ax3) = plt.subplots(1,3)
patch = PathPatch(path, facecolor='k')
ax1.add_patch(patch)
xmin, ymin = np.min(points, axis=0)
xmax, ymax = np.max(points, axis=0)
ax1.set_ylim(ymin,ymax)
ax1.set_xlim(xmin,xmax)
ax1.set_aspect('equal')
# create a grid
nx, ny = 1000, 1000
x = np.linspace(xmin, xmax, nx)
y = np.linspace(ymin, ymax, ny)
xgrid, ygrid = np.meshgrid(x, y)
pixel_coordinates = np.c_[xgrid.ravel(), ygrid.ravel()]
# find points within path
img = path.contains_points(pixel_coordinates).reshape(nx,ny)
# plot
ax2.imshow(img, cmap='gray_r', interpolation='none', origin='lower')
# repeat, but this time specify pixel widths explicitly
dx, dy = 2000, 2000
x = np.arange(xmin, xmax, dx)
y = np.arange(ymin, ymax, dy)
xgrid, ygrid = np.meshgrid(x, y)
pixel_coordinates = np.c_[xgrid.ravel(), ygrid.ravel()]
img = path.contains_points(pixel_coordinates).reshape(len(x), len(y))
ax3.imshow(img, cmap='gray_r', interpolation='none', origin='lower')
好的,所以现在测试每个图块的任何角落是否在路径内。出于某种原因,我仍然得到另一个答案,而不是图片所示。您有多确定,您提供的要点是否准确?
代码+图片:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import PathPatch
from matplotlib.path import Path
# create a matplotlib path
points = [[1535116L, 1725047L],
[1535116L, 2125046L],
[-464884L, 2125046L],
[-464884L, 125046L],
[1535116L, 1725047L]]
codes = [Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,
]
path = Path(points, codes)
fig, (ax1, ax2) = plt.subplots(1,2)
patch = PathPatch(path, facecolor='k')
ax1.add_patch(patch)
xmin, ymin = np.min(points, axis=0)
xmax, ymax = np.max(points, axis=0)
ax1.set_ylim(ymin,ymax)
ax1.set_xlim(xmin,xmax)
ax1.set_aspect('equal')
nx, ny = 4, 4
x = np.linspace(xmin, xmax, nx)
y = np.linspace(ymin, ymax, ny)
xgrid, ygrid = np.meshgrid(x, y)
pixel_centers = np.c_[xgrid.ravel(), ygrid.ravel()]
def pixel_center_to_corners(x, y, dx, dy, precision=0.):
"""
Returns array indexed by (pixel, corner, (x,y))
"""
# make dx and dy ever so slightly smaller,
# such that the points fall **inside** the path (not **on** the path)
dx -= precision
dy -= precision
return np.array([(x - dx/2., y - dy/2.), # lower left
(x + dx/2., y - dy/2.), # lower right
(x + dx/2., y + dy/2.), # upper right
(x - dx/2., y + dy/2.), # upper left
]).transpose([2,0,1])
# get pixel corners
dx = (xmax - xmin) / float(nx)
dy = (ymax - ymin) / float(ny)
pixel_corners = pixel_center_to_corners(pixel_centers[:,0], pixel_centers[:,1], dx, dy)
# test corners of each pixel;
# set img to True, iff any corners within path;
img = np.zeros((len(pixel_corners)))
for ii, pixel in enumerate(pixel_corners):
is_inside_path = path.contains_points(pixel)
img[ii] = np.any(is_inside_path)
img = img.reshape(len(x), len(y))
ax2.imshow(img, cmap='gray_r', interpolation='none', origin='lower')